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Electrochemical Systems for Renewable Energy Storage
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Li lon Batteries - Where Are We?

= Widely used for portable, mobile and increasingly stationary power supply
= Challenges remaining: cost, energy density, safety
— Operate at upper performance limits — optimal cell diagnosis/operation
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Processes and Performance Variables of Li lon Batteries
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Main processes in battery
= Electrochemical reactions, e.g. Li,Cq «— Cg + XLi* + xe~
= Migration, diffusion
= Double layer (dis)charging, heat transport/generation
= Degradation processes

Essential performance variables for diagnosis/operation/control

= State of charge: percentage of available capacity at time t, (Cpax — C(t))/Crax
= State of health: percentage of remaining max. capacity, Cmax/Cmax,t—o

ECC19, Naples, June 25 2019 U. Krewer | Dynamic Modeling and State Analysis of LiB | Page 5 of 30




Challenging Li-lon Battery ~ Mechanistic Modeling ~ Equivalent Circuit, Data Driven and Hybrid Modeling  Advanced Dynamic Analysis using Nonlinearities

General Challenge for Electrochemical Technologies

= Electrochemical cells consist of thin, sensitive layers.
= |n each layer are strongly different and interacting processes.
Only three variables easily measurable: current, voltage, (temperature).

These conditions make it difficult to understand processes in and state of
cells!

Optimal diagnosis and operation (performance, safety, lifetime) thus
challenging
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Dynamic Methods for Better Diagnosis and Operation

[Krewer et al., J. Electrochem. Soc. 2018]

= Electrochemical cells contain processes on different time scales:
slow transport processes, fast electron transport, slow and fast reactions

e migration reaction diffusion in solid  relaxation
ion migration diffusion in liquid heat conduction
lus 1ms 1s 1min  1hour time
. 1MHz 1 kHz 1 Hz 1 mHz
<¢
frequency

= Dynamic methods allow to separately analyse slow and fast processes
= Established dynamic techniques in electrochemistry: impedance
spectroscopy (sinus), chronoamperometry (step), cyclovoltammetry (ramp)
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Well Characterised LIB at Battery LabFactory Braunschweig

= Interdisciplinary R&D platform for the development, production, diagnosis
and simulation of (Li ion) batteries,

= offers an engineering based infrastructure for the tailored production and
analysis of electrodes, cells and systems.

» Facts: 13 Professors and PTB; > 70 researchers; 900 m? pilot plant
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Typical Impedance Spectrum of LIB
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Spectrum of cell manufactured at Battery LabFactory clearly shows
= aging process of LIB
= similar features as in literature
Open Question

How to extract information from spectrum?
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Modeling Approaches for Diagnosis and Operation

[Krewer et al., J. Electrochem. Soc. 2018]

Modeling

allows to predict performance, estimate (critical) state from complex measurements
(e.g. EIS), optimise performance

Mechanistic Modeling

= First principles modeling

= Considers physical,
electrical and chemical
phenomena

+ Provides deep insight
into processes and
battery state

- Challenging to
parameterise,
computationally
demanding

Equivalent Circuit (EC)
Modeling

= Map ionic/electric
processes to network of
electric circuit
componends

+ Easily adustable to
reproduce measured
behavior

- Often non-unique EC &
effect attribution; limited
in-sight

Data-driven Modeling

= Trained black box
models correlate
measured features to
performance

+ Allows modeling of
complex, not well
understood behavior

- Training/analysis
time-consuming and
expensive; no in-sight
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Mechanistic Modeling: Purpose and Principle

[Krewer et al., J. Electrochem. Soc. 2018]
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Example 1: Understanding Film Formation

[Roeder, Braatz, Krewer, J. Electrochem. Soc. 2017]
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Model-based in-sight into Li loss during first cycle allows to optimise this procedure
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Example 2: Assessing Uncertainty in Production

[Laue, Schmidt, Dreger, Xie, Réder, Schenkendorf, Kwade, Krewer, Energy Technol. 2019]
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= Uncertain product parameters lead to uncertain performance

= Product deviation detrimental for balancing cells, i.e. performance/life-time loss

= Knowledge uf production uncertainty impact important for battery system
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Example 3: Estimating Degradation Parameter

[Heinrich, Wolff, Roeder, Seitz, Krewer, Batteries and Supercaps, 2019]
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= Model able to reproduce spectra during aging

= Degradation cause/progress located
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Equivalent Circuit Modeling: Purpose and Principle

[Krewer et al., J. Electrochem. Soc. 2018]
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Data-driven Modeling: Purpose and Principle

[Krewer et al., J. Electrochem. Soc. 2018]

Data-driven
SOC and SOH
Modeling

Mapping Features

Black-box Approaches and Characteristics Gray-box Approaches
Incremental Capacity

Number of Cycles

SVM GPR Internal Resistance GA RLS
Polarization Time

Constant . .

Full Data-driven Diffusion Capacitance D Eq”'“'em‘c'"’““
Algorithms Open Circuit Voltage Data-driven KF
NN LS Algorithms
EKF UKF
Fuzzy

SOC and SOH

support vector machine (SVM), Gaussian process regression (GPR), least squares (LS), neural network (NN), genetic algorithm (GA), recursive least

square (RLS), unscented/extended Kalman filter (KF/UKF/EKF), and singular value decomposition (SVD)
Principle
Correlate features with state of health/charge using trained black-box algorithms
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Hybrid Modeling: Data-Driven and EC/Mechanistic Modeling

[Krewer et al., J. Electrochem. Soc. 2018]

Lumped First-principles Modeling Data-driven Modeling
Equivalent Circuit (EC) Modeling 0OCV-SOC Modeling
x=f(x1p) e.g., Lookup table
Analytical expression:
x — states c_’f ba_ttery model . Xocv = g(50C)
Xpcy — Open circuit voltage (one of states in x)
1 — Current EC parameter - SOH Modeling
Internal resistance
Polarization resistance e.g.,, Analytical expression:
p — EC parameters, e. g., and Capacitance Caisr = h(SOH, T), Cyip — diffusion capacitance
Diffusion resistance Rine = I(SOH,T), Riy — internal resistance
and Capacitance T — temperature

Hybrid Modeling

Hybrid modeling as promising way to include physical effects and rapid estimation
with limited data
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Hybrid Model for Performance Estimation

[Krewer et al., J. Electrochem. Soc. 2018]
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Combination of EC, mechanistic model with data correlation allows rapid estimation
for better operation.
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Why Nonlinear Methods?

e Nonlinear vs. linearised model: response
» EIS is a linear system analysis tool of fuel cell voltage to current step

. 0.
= |.e. nonlinear systems deflected <
only so much that linear response 50
. )
obtained g 052
Q
= Advantage: Signal independent; .
extensive theory on linear systems 8
analysis available ot o g © 2
. . . ime, /]s; [Krewer]
» Yet: loss of nonlinear information o Experiment: EIS of Pb acid battery

» Dependence of / on E highly T oy |
nonlinear (Butler-Volmer) Bt P

——1mv

= Nonlinear system analysis as
complementary method

Im( 2}/ mQ

20 0 60 80 100
Re{Z}/mQ [Sauer]
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Nonlinear Frequency Response

Nonlinear frequency response analysis (NFRA)

= analyses the higher harmonic responses (e.g. due to reactions)

= t0 a sinusoidal input signal of large amplitude

= Compare: Impedance analyses only linear part, i.e. less information
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NFRA on Lithium-lon-Batteries: NFRA vs. EIS

g X107 3
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ol Re / Q
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Frequency / Hz Il 1to ~ 300 Hz Electrode Reactions

Il 300to ~1kHz Transport in SEI

= Characteristic features of NFRA and EIS at same frequencies

= Area lll may be correlated to the typically linear transport in SEI

: T he
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Understanding NFRA via Mechanistic Model

[Wolff, Harting, Krewer, El. Acta 18]

Exp. commercial 18650 cell VvS. P2D model simulation (lit. parameters)
a) 00l o7 b) 0.01 :
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Impact of cathode particle radius

—R_=2e-06m :
B sisiE = Successful correlation of model to
R_=6e-06m experiment for commercial cells

= Simulation aids in interpretation of NFR
spectra
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SOH Extraction via Support Vector Regression

[Harting et al., Applied Sciences 18]

Data-based algorithms for estimating SOH

NFRA - Outcome Correlation Analysis Feature Extraction

Feature A
_ | FeatureB
X= | FeatureC

Feature X

v +v;+ Yy IV I
SoHt

Frequency / Hz NFRA(Frequency) O™ Sensitve Degradation
Feature / -

SOH Degradation Model  Successful validation of SOH extraction from NFR

100

Cell Type SoH; SoHgyy Accuracy/ %
B identical 28 29 3
2 C identical 63 66 4
04 03 06 07 05 09 1
Degradation feature / - D non-identical 100 9% 4
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Basic Butler-Volmer model for Electrochemical Reaction

[Wolff, Krewer, Europ. Phys. J. ST 2019]

0.02 +— NPT SNV PV R . 2 " g
o E )
< ci
~ g -40
20014 a -
= S .
0 =1 (]‘ Re= T i |
a) 1072 10° 10* 0 10 80
Re(Z) / mQm?
b) 0.02 A R T T T Y ol e
Yy: dashed line
& —a=05%
\‘“-01 I g T PR ) l—a =04
> > a=03
N
0 - !
102 10° 10* 10*

Frequency / Hz

= Asymmetric electrochemical reactions (x # 0.5) increase NFR and EIS

= Unique discrimination feature only in NFRA: Y, and Y; react differently to
asymmetric processes
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Detection of Safety-critical Li-Plating with NFRA

[Harting et al., El. Acta 2018]
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Dynamic Models for Li lon Batteries

= Batteries operated at upper limit — Estimation of state of
health/charge/safety essential

= Modeling essential for interpreting experiments, state estimation and safe
operation

= Mechanistic, equivalent circuit and data-driven models usable
= Combination of modeling approaches especially practical.
= Non-linear frequency response analysis as new powerful analysis method

T e veds
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Institute of Energy and Process Systems Engineering
Max Planck: ‘Insight must precede application”

. IMPRS Magdeburg |(5

— vz~
- NER international Max Planck Research School
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= .. thanks all cooperation partners (BLB, Braatz (MIT)) and financial supporters
(BMBF, BMWI, MIT seed fund, AlF),

= and thanks you for your attention!
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