

Dynamic Modeling and State Analysis of Li Ion Batteries

Prof. Dr.-Ing. Ulrike Krewer and co-workers¹, ², ECC19, Naples, June 25 2019

¹ Institute of Energy and Process Systems Engineering, TU Braunschweig, Germany

² Battery LabFactory Braunschweig, TU Braunschweig

Content

Challenging Li-lon Battery

- Mechanistic Modeling
- Equivalent Circuit, Data Driven and Hybrid Modeling
- Advanced Dynamic Analysis using Nonlinearities

Electrochemical Systems for Renewable Energy Storage

Li Ion Batteries - Where Are We?

- Widely used for portable, mobile and increasingly stationary power supply
- Challenges remaining: cost, energy density, safety
- → Operate at upper performance limits → optimal cell diagnosis/operation

[Nykvist, Nilsson, Nature Climate Change, 2015]

Processes and Performance Variables of Li Ion Batteries

Main processes in battery

- Electrochemical reactions, e.g. $\text{Li}_{x}\text{C}_{6} \longleftrightarrow \text{C}_{6} + x \text{Li}^{+} + x \text{e}^{-}$
- Migration, diffusion
- Double layer (dis)charging, heat transport/generation
- Degradation processes

Essential performance variables for diagnosis/operation/control

- State of charge: percentage of available capacity at time t, $(C_{max} C(t))/C_{max}$
- State of health: percentage of remaining max. capacity, $C_{max}/C_{max,t=0}$

- Electrochemical cells consist of thin, sensitive layers.
- In each layer are strongly different and interacting processes.
- Only three variables easily measurable: current, voltage, (temperature).
- These conditions make it difficult to understand processes in and state of cells!
- Optimal diagnosis and operation (performance, safety, lifetime) thus challenging

Dynamic Methods for Better Diagnosis and Operation

[Krewer et al., J. Electrochem. Soc. 2018]

Electrochemical cells contain processes on different time scales:
 slow transport processes, fast electron transport, slow and fast reactions

e ⁻ migration	reaction	diffusion in	solid re	elaxation	
ion m	nigration	diffusion in liquid	heat cor	nduction	
1 μs 1 MHz	1 ms 1 kHz	1 s 1 Hz	1 min	1 hour mHz	time
frequency	I NIZ	I H2		111112	_

- Dynamic methods allow to separately analyse slow and fast processes
- Established dynamic techniques in electrochemistry: impedance spectroscopy (sinus), chronoamperometry (step), cyclovoltammetry (ramp)

Well Characterised LIB at Battery LabFactory Braunschweig

- Interdisciplinary R&D platform for the development, production, diagnosis and simulation of (Li ion) batteries,
- offers an engineering based infrastructure for the tailored production and analysis of electrodes, cells and systems.
- Facts: 13 Professors and PTB; > 70 researchers; 900 m² pilot plant

Typical Impedance Spectrum of LIB

Spectrum of cell manufactured at Battery LabFactory clearly shows

- aging process of LIB
- similar features as in literature

Open Question

How to extract information from spectrum?

Modeling Approaches for Diagnosis and Operation

[Krewer et al., J. Electrochem. Soc. 2018]

Modeling

allows to predict performance, estimate (critical) state from complex measurements (e.g. EIS), optimise performance

Mechanistic Modeling

- First principles modeling
- Considers physical, electrical and chemical phenomena
- Provides deep insight into processes and battery state
- Challenging to parameterise, computationally demanding

Equivalent Circuit (EC) Modeling

- Map ionic/electric processes to network of electric circuit componends
- Easily adustable to reproduce measured behavior
 - Often non-unique EC & effect attribution; limited in-sight

Data-driven Modeling

- Trained black box models correlate measured features to performance
- Allows modeling of complex, not well understood behavior
- Training/analysis time-consuming and expensive; no in-sight

Content

Challenging Li-lon Battery

Mechanistic Modeling

- Equivalent Circuit, Data Driven and Hybrid Modeling
- Advanced Dynamic Analysis using Nonlinearities

Mechanistic Modeling: Purpose and Principle

[Krewer et al., J. Electrochem. Soc. 2018]

Scope

Understanding, prediction, reproduction and control of states and behavior of LiB

Example 1: Understanding Film Formation

Potential, film thickness and film structure

Reaction rates

Model-based in-sight into Li loss during first cycle allows to optimise this procedure

Example 2: Assessing Uncertainty in Production

[Laue, Schmidt, Dreger, Xie, Röder, Schenkendorf, Kwade, Krewer, Energy Technol. 2019]

Uncertainties in production

Experimental Performance

Predicted performance

- Uncertain product parameters lead to uncertain performance
- Product deviation detrimental for balancing cells, i.e. performance/life-time loss
- Knowledge uf production uncertainty impact important for battery system

Example 3: Estimating Degradation Parameter

[Heinrich, Wolff, Roeder, Seitz, Krewer, Batteries and Supercaps, 2019]

- Mechanistic model for identification of degradation causes and progress
- Here: film thickness and surface passivation

- Model able to reproduce spectra during aging
- Degradation cause/progress located

Content

- Challenging Li-lon Battery
- Mechanistic Modeling
- Equivalent Circuit, Data Driven and Hybrid Modeling
- Advanced Dynamic Analysis using Nonlinearities

Equivalent Circuit Modeling: Purpose and Principle

[Krewer et al., J. Electrochem. Soc. 2018]

Scope

Reproduce and estimate state of health/charge of LiB with electric circuit elements

Besides classical electric circuit elements, introduction of new (nonlinear) elements, which emulate reaction and diffusion process behavior

Data-driven Modeling: Purpose and Principle

[Krewer et al., J. Electrochem. Soc. 2018]

support vector machine (SVM), Gaussian process regression (GPR), least squares (LS), neural network (NN), genetic algorithm (GA), recursive least square (RLS), unscented/extended Kalman filter (KF/UKF/EKF), and singular value decomposition (SVD)

Principle

Correlate features with state of health/charge using trained black-box algorithms

Hybrid Modeling: Data-Driven and EC/Mechanistic Modeling

[Krewer et al., J. Electrochem. Soc. 2018]

Lumped First-principles Modeling

Equivalent Circuit (EC) Modeling

$$\dot{x} = f(x, I, p);$$

x – states of battery model

 x_{OCV} – Open circuit voltage (one of states in x)

- Current

p – EC parameters, e. g., Polarization resistance and Capacitance Diffusion resistance and Capacitance

Internal resistance

Data-driven Modeling

OCV-SOC Modeling

e.g., Lookup table Analytical expression: $x_{OCV} = g(SOC)$

EC parameter - SOH Modeling

e.g., Analytical expression:

 $C_{
m diff} = h({
m SOH},T), \ C_{
m diff} - {
m diffusion capacitance} \ R_{
m int} = l({
m SOH},T), \ R_{
m int} - {
m internal resistance} \ T - {
m temperature}$

Hybrid Modeling

Hybrid modeling as promising way to include physical effects and rapid estimation with limited data

Hybrid Model for Performance Estimation

[Krewer et al., J. Electrochem. Soc. 2018]

Combination of EC, mechanistic model with data correlation allows rapid estimation for better operation.

Content

- Challenging Li-lon Battery
- Mechanistic Modeling
- Equivalent Circuit, Data Driven and Hybrid Modeling
- Advanced Dynamic Analysis using Nonlinearities

Why Nonlinear Methods?

- EIS is a linear system analysis tool
- I.e. nonlinear systems deflected only so much that linear response obtained
- Advantage: Signal independent; extensive theory on linear systems analysis available
- Yet: loss of nonlinear information
- Dependence of *I* on *E* highly nonlinear (Butler-Volmer)
- Nonlinear system analysis as complementary method

 Nonlinear vs. linearised model: response of fuel cell voltage to current step

[Krewer]

Experiment: EIS of Pb acid battery

Nonlinear Frequency Response

Nonlinear frequency response analysis (NFRA)

- analyses the higher harmonic responses (e.g. due to reactions)
- to a sinusoidal input signal of large amplitude
- Compare: Impedance analyses only linear part, i.e. less information

NFRA on Lithium-Ion-Batteries: NFRA vs. EIS

Rang	je Frequency	Typ. processes
ı	0 to ~ 1 Hz	Diffusion
II	1 to ~ 300 Hz	Electrode Reactions
Ш	300 to \sim 1 kH	Iz Transport in SEI

- Characteristic features of NFRA and EIS at same frequencies
- Area III may be correlated to the typically linear transport in SEI

Understanding NFRA via Mechanistic Model

[Wolff, Harting, Krewer, El. Acta 18]

Exp. commercial 18650 cell

P2D model simulation (lit. parameters)

Impact of cathode particle radius

- Successful correlation of model to experiment for commercial cells
- Simulation aids in interpretation of NFR spectra

SOH Extraction via Support Vector Regression

[Harting et al., Applied Sciences 18]

Data-based algorithms for estimating SOH

SOH Degradation Model Successful validation of SOH extraction from NFR

Cell	Type	\mathbf{SoH}_i	\mathbf{SoH}_{SVM}	Accuracy / %
В	identical	28	29	3
C	identical	63	66	4
D	non-identical	100	96	4

Basic Butler-Volmer model for Electrochemical Reaction

[Wolff, Krewer, Europ. Phys. J. ST 2019]

- Asymmetric electrochemical reactions ($\alpha \neq 0.5$) increase NFR and EIS
- Unique discrimination feature only in NFRA: Y₂ and Y₃ react differently to asymmetric processes

Detection of Safety-critical Li-Plating with NFRA

[Harting et al., El. Acta 2018]

- Cycling aging mechanism = f(T)
- Only low T caused Li plating (safety risk)

T: -10°C

T: 25°C

- NFRA shows unique feature for plating detection $(Y_2 > Y_3)$
- Plating changes asymmetry of reactions at anode

Dynamic Models for Li Ion Batteries

- Batteries operated at upper limit → Estimation of state of health/charge/safety essential
- Modeling essential for interpreting experiments, state estimation and safe operation
- Mechanistic, equivalent circuit and data-driven models usable
- Combination of modeling approaches especially practical.
- Non-linear frequency response analysis as new powerful analysis method

Institute of Energy and Process Systems Engineering

Max Planck: 'Insight must precede application"

InES

- ... thanks all cooperation partners (BLB, Braatz (MIT)) and financial supporters (BMBF, BMWI, MIT seed fund, AIF),
- and thanks you for your attention!

