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Why study optimization?

Optimization is about making good decisions or choices in a rigorous way,
often subject to constraints. Applications appear everywhere in science,
mathematics, and business.

Examples:

portfolio optimization
variables: amounts invested in di↵erent assets
constraints: budget, max/min investment per asset, minimum return
objective: overall risk or return variance

data fitting
variables: model parameters
constraints: prior information, parameter limits
objective: measure of misfit or prediction error

energy usage
variables: turning OFF/ON, state of charge, power generation
constraints: operational limits, timing requirements, power balance
objective: power consumption/bill, pollution
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Optimization problem types

We generally consider families or classes of optimization problems,
characterized by particular forms of the objective and constraint functions.

The optimization problem is called a linear program (LP) if the objective
function and the constraint are linear.

Integer Programming Problem (IP): all variables are restricted to be
integer

0 – 1 Integer Programming Problem (BIP): all variables are
restricted to be binary

Mixed Integer Linear Programming (MILP): some of the variables
are restricted to be integers.
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Optimization problem

A common problem format:

min
z2Z

f(z)

subject to: gi(z)  0, i = 1, . . . ,m

hj(z) = 0 j = 1, . . . , p

Objective function f : Z ! R;
Domain Z ✓ Rn of the objective function, from which the decision

variables z := {z1, z2, . . . , zn} must be chosen;

Optional inequality constraint function gi : Rn ! R for i = 1, . . . ,m;

Optional equality constraint function hj : Rn ! R for j = 1, . . . , p;

The gi and hj define the constraint set S ✓ Z.
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Properties of the optimization problem

Consider the generic optimization problem:

J⇤ = min
z2S

f(z)

Notation:

if J⇤ = �1, unbounded below problem;

if S is empty, infeasible problem (J⇤ = +1);

if S = Rn, unconstrained problem;

there might be more than one solution: argmin
z2S

f(z) = {z 2 S| f(z) = J⇤}

Feasible point: a vector z 2 S satisfying the inequality and equality
constraints, i.e. gi(z)  0 for i = 1, . . . ,m, hj(z) = 0 for j = 1, . . . , p.

Strictly feasible point: a vector z 2 Z satisfying the inequality
constraints strictly, i.e. gi(z) < 0 for i = 1, . . . ,m.
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Terminology

Optimal value: The lowest possible objective value, f(z⇤).

Optimal solution or minimizer: Any feasible z⇤ 2 Z such that
f(z⇤)  f(z) for all feasible z 2 Z.

Local optimum: a point z⇤local that is optimal within a neighbourhood
kz � z⇤localk  R.
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Active, Inactive and Redundant Constraints

Consider the standard problem

min
z2Z

f(z)

subject to: gi(z)  0, i = 1, . . . ,m

hj(z) = 0 j = 1, . . . , p

The ith inequality constraint gi(z)  0 is active at z̄ if gi(z̄) = 0.
Otherwise it is inactive;

Equality constraints are always active;

A redundant constraint is one that does not change the feasible set.
This implies that removing a redundant constraint does not change the
solution. Example:

min
z2R

f(z)

subject to: z  1

z  2 (redundant)
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Geometry of an Optimization Problem
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“Easier” problems: Linear and Convex Quadratic
Programs

Linear Program (LP): Linear cost and con-
straint functions; feasible set is a polyhedron.

min
z

c>z

subject to: Gz  h

Az = 0

Convex Quadratic Program (QP): Quad-
ratic cost and linear constraint functions; feasi-
ble set is a polyhedron. Convex if P ⌫ 0.

min
z

1

2
z>Pz + q>z

subject to: Gz  h

Az = 0
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“Harder” problems: Nonconvex and Integer Programs

Nonconvex Quadratic Program:

QP with P ✏ 0.

min
z

1

2
z>Pz + q>z

subject to: Gz  h

Az = 0

Mixed Integer Linear Program

(MILP): Linear program with binary
or integer constraints.

min
z

c>z

subject to: Gz  h

Az = 0

z 2 {0, 1}n or z 2 Zn
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Convex set

A set Z is convex if and only if for any pair of points z and y in Z, any convex
combination of z and y lies in Z.

Z is convex , �z + (1� �)y 2 Z, 8� 2 [0, 1], 8z, y 2 Z

All line segments starting and ending in Z stay within Z.
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Convex set

An a�ne set is a convex set defined by Z = {z 2 Rn|Az = b}. A subspace is
an a�ne set with b = 0.

A hyperplane is defined by Z = {z 2 Rn|a>
z = b} for a 6= 0, where a 2 Rn is

the normal vector to the hyperplane.

A halfspace is everything on one side of a hyperplane, i.e. {z 2 Rn|a>
z  b}

for a 6= 0. It can either be open (strict inequality) or closed (non-strict
inequality).

Hyperplanes and halfspaces are always convex.
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Convex set

A polyhedron is the intersection of a finite number of closed halfspaces:

Z = {z|aT
1 z  b1, a

T
2 z  b2, . . . , a

T
mz  bm} = {z|Az  b}

A polytope is a bounded polyhedron.

Polyhedra and polytopes are always convex.
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Convex function

A function f : dom(f) ! R is convex if and only if its domain dom(f) is
convex and

f (�x+ (1� �)y)  �f(x) + (1� �)f(y), 8� 2 [0, 1], 8z, y 2 dom(f)

The function f is strictly convex if the above inequality is strict for � 2 (0, 1).
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Convex function

1st-order condition for convexity

A di↵erentiable function f : dom(f) ! R with a convex domain is convex i↵

f(y) � f(z) +rf(z)>(y � z), 8z, y 2 dom(f)

i.e., a first order approximator of f around any point z is a global

underestimator of f .

The gradient rf(z) is given by rf(z) =
h
@f(z)
@z1

,
@f(z)
@z2

, . . . ,
@f(z)
@zn

i
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Convex function

2nd-order condition for convexity

A twice-di↵erentiable function f : dom(f) ! R is convex i↵ its domain dom(f)
is convex and

r2
f(z) ⌫ 0, 8z 2 dom(f),

where the Hessian square matrix r2
f(z) is defined by r2

f(z)ij = @2f(z)
@zi@zj

.

If dom(f) is convex and r2
f(z) � 0 for all z 2 dom(f), then f is strictly convex.
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Convex function

Epigraph of a function

The epigraph of a function f is the set

epi(f) =

⇢
z

t

� ���z 2 dom(f), f(z)  t

�
✓ dom(f)⇥ R

f is convex i↵ epi(f) is convex.
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Convex function

Level and sublevel sets

The level set L↵ of a function f for value ↵ is the set of all z 2 dom(f) for
which f(z) = ↵, i.e.

L↵ = {z|z 2 dom(f), f(z) = ↵}.

For f : R2 ! R these are contour lines of constant “height”.

The sublevel set C↵ of a function f for value ↵ is defined by

C↵ = {z|z 2 dom(f), f(z)  ↵}.

Function f is convex ) sublevel sets of f are convex for all ↵. But 6( !
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Convex function

Examples of convex functions: R ! R

The following functions are convex (on domain R unless otherwise stated):

A�ne: ax+ b for any a, b 2 R
Exponential: eax for any a 2 R
Powers: z↵ on domain R++, for ↵ � 1 or ↵  0
Powers of absolute value: |z|p, for p � 1

The following functions are concave (i.e., their opposite is convex) on
domain R unless otherwise stated:

A�ne: ax+ b for any a, b 2 R
Powers: z↵ on domain R++, for 0  ↵  1
Logarithm: log z on domain R++

Entropy: �z log z on domain R++
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Convex function

Examples of convex functions: Rn ! R

A�ne functions on Rn are both convex and concave:

On Rn, for some a 2 Rn and b 2 R

f(z) = a
>
z + b

Vector Norms on Rn are all convex:

On Rn, lp norms have the form, for p � 1,

kzkp =

 
nX

i=1

|z|p
!1/p

, with kzk1 = maxi|zi|

lp norms
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Convex optimization problem

Standard form of the convex optimization problem

min
z2Z

f(z)

subject to: gi(z)  0, i = 1, . . . ,m

a
>
j z = bj j = 1, . . . , p

the objective function f is a convex function;

equality constraints are a�ne;

inequality constraints functions gi are convex.

Theorem
For a convex optimization problem, every locally optimal solution is globally optimal

Luigi Glielmo (GRACE, UniSannio) Intro to Optimization June 30, 2021 22 / 63

Cf
inequality convex



General Linear Problem

A�ne cost and constraint functions

min
z

c
>
z + d

subject to: Gz  h

Az = b

Feasible set is a polyhedron.

Constant component d can be left out — it has no e↵ect on the optimal
solution.

Many problems can be written (with some e↵ort) into LPs.

Huge variety of solution methods and software are available.
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General Linear Problem

Example: Cheapest cat-food problem:

Choose quantities z1, z2, . . . , zn of n di↵erent foods with unit cost cj .

Each food j has nutritional content aij for nutrient i.

Require for each nutrient i a minimum level bi.

In linear program form:

min
z

c
>
z

subject to: Az � b

z � 0

This is an example of a resource allocation problem.
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General Quadratic Problem

Quadratic cost function with P ⌫ 0, a�ne constraint functions:

min
z

1
2
z
>
Pz + q

>
z + r

subject to: Gz  h

Az = b

Feasible set is a polyhedron.

Constant component r can be left out — it has no e↵ect on the optimal solution.
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General Quadratic Problem

Example: Least Squares

min
z

kAz � bk

Analytical solution A
†
b (A† is the pseudo-inverse).

Extra linear constraints l  z  u can be added, although the QP would no
longer have an analytical solution.

In case the problem above is ill-posed, it can be regularized as

min
z

kAz � bk+ r(z)

The particular case r(z) = ⇢ kzk1 yields to a LASSO problem (Least Absolute
Shrinkage and Selection Operator).
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General Quadratic Problem

Example: Linear program with random cost

min
z

E
h
c
>
z

i
+ � var

⇣
c
>
z

⌘
= c

>
z + � z

>�z

subject to: Gz  h

Az = b

Random cost function vector c with mean c̄ and covariance �, we penalize
expected cost plus a risk premium on the variance.

Large � means large risk aversion, we prefer a small variance to the lowest
expected cost.
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Classification problems

Classification via Logistic Regression

We are given N measurement points pi and an associated label li 2 {�1, 1}. We look

for a separating hyperplane in the p space, w
T
p+ b = 0 , whose parameters w and b

can be determined as solution to the following (strictly) convex unconstrained
problem

min
w,b

NX

i=1

ln[1 + e
�(wT pi+b)li ] +

⇢

2
kwk2

Luigi Glielmo (GRACE, UniSannio) Intro to Optimization June 30, 2021 28 / 63

jà



Classification problems

Classification via Support Vector Machines, hard margins

min
w,b

1
2
kwk2,

s.t. (wT
pi + b)li � 1, i 2 {1, . . . , N}.

Classification via Support Vector Machines, soft margins

min
w,b

1
2
kwk2 + ⇢

X

i

⇠i,

s.t. (wT
pi + b)li � 1� ⇠i, i 2 {1, . . . , N},

⇠ � 0.
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Unconstrained problems

Optimality Criterion for Di↵erentiable f ’s

Theorem (Necessary condition)

f : Rs ! R is di↵erentiable at z̄. If z̄ is a local minimizer, then rf(z̄) = 0.

Theorem (Su�cient condition)

Suppose that f : Rs ! R is twice di↵erentiable at z̄. If rf(z̄) = 0 and the Hessian of

f(z) at z̄ is positive definite, then z̄ is a local minimizer.

Theorem (Necessary and su�cient condition)
Suppose that f : Rs ! R is di↵erentiable at z̄. If f is convex, then z̄ is a local

minimizer, if and only if rf(z̄) = 0.
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Constrained problems

Optimality Conditions

Consider the problem

min
z2Z

f(z)

subject to: gi(z)  0, i = 1, . . . ,m

hj(z) = 0 j = 1, . . . , p

In general, an analytical solution does not exist.

Solutions are usually computed by recursive algorithms which start from an
initial guess z0 and at step k generate a point zk such that {f(zk)}k=0,1,...

converges to f
⇤.

These algorithms recursively use and/or solve analytical conditions for

optimality.
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Constrained problems

KKT optimality conditions

z
⇤
, (�⇤

, ⌫
⇤) of an optimization problem, with di↵erentiable cost and constraints and

zero duality gap, have to satisfy the following conditions:

0 = rf(z⇤) +
mX

i=1

�
⇤
irgi(z

⇤) +
pX

j=1

⌫
⇤
jrhi(z

⇤) (1a)

0 = �
⇤
i gi(z

⇤), i = 1, . . . ,m (1b)

0  �
⇤
i , i = 1, . . . ,m (1c)

0 � gi(z
⇤), i = 1, . . . ,m (1d)

0 = hj(z
⇤), j = 1, . . . , p (1e)

Conditions (1a)-(1e) are called the Karush-Kuhn-Tucker (KKT) conditions.
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The Lagrange Function

To the primal optimization problem

inf
z

f(z)

subject to: gi(z)  0 for i = 1, . . . ,m

hi(z) = 0 for i = 1, . . . , p

z 2 Z

we associate the Lagrange function

L(z,�, ⌫) = f(z) + �
>
g(z) + ⌫

>
h(z)

�i � 0 and ⌫i called Lagrange multipliers or dual variables

the objective is augmented with weighted sum of constraint functions

notice f(z) + �
>
g(z) + ⌫

>
h(z)  f(z) for feasible z

We look for minz L(z,�, ⌫) without constraints.
Then (dual problem) we maximize w.r.t. (�, ⌫).
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Software tools for optimization I

min
z

|z1 + 5|+ |z2 � 3|

subject to: 2.5  z1  5;

� 1  z2  1.

CVX toolbox for MATLAB

% I n i t i a l i z e CVX environment
cvx_begin
% Def ine co s t func t i on
variables z1 z2 ;
% Def ine c on s t r a i n t s
minimize ( abs ( z1 + 5) + abs ( z2 - 3) ) ;
subject to ;
2 . 5 <= z1 <= 5 ;
-1 <= z2 <= 1 ;
cvx_end % so l v e s automat i ca l l y
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Software tools for optimization II

YALMIP toolbox for MATLAB

% I n i t i a l i z e yalmip environment
yalmip ( ' c l e a r ' ) ;
% Dec i s ion v a r i a b l e s
sdpvar z1 z2 ;
const= [ ] ;
obj= 0 ;
% Def ine co s t func t i on
obj = obj+ abs ( z1 + 5) + abs ( z2 - 3) ;
% Def ine c on s t r a i n t s
Const= [ Const , 2 . 5 <= z1 <= 5 ] ;
Const= [ Const , -1 <= z2 <= 1 ] ;
% Solve the opt imiza t i on problem
solvesdp ( Const , obj ) ;
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Mixed integer linear programming (MILP) I

A mixed-integer linear programming (MILP) is a problem of the form

max
x

c
T
x

subject to a
T
i x  bi, i = 1, . . . ,m

where x 2 Zq ⇥ Rp.

objective function and all constraints are linear; the vectors c, a1, . . . , am 2 Rn

and scalars b1, . . . , bm 2 R are problem parameters that specify the objective
and the constraint functions.

q variables are integers, p variables are continuous (q + p = n).

Feasible solution: The set S of all x 2 Zq ⇥ Rp which satisfy the linear
constraints aT

i x  bi, i = 1, . . . ,m

S =
n
x 2 Zq ⇥ Rp

, a
T
i x  bi, i = 1, . . . ,m

o

is called feasible set and an element x 2 S is called feasible solution.
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Mixed integer linear programming (MILP) II

Di↵erent approaches There is no single technique for solving integer
programs. Instead, a number of procedures have been developed:

Enumeration (Guaranteed to find a feasible solution, but exponential
growth in computation time)

Branch and Bound

Cutting plane

They require LP relaxation.
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LP-relaxation

LP constraints form a polytope

IP feasible set is given by set of all
integer-valued points within the
polytope

feasible set of IP ⇢ feasible set of LP

LP-relaxation

The LP-relaxation of a MILP or IP is obtained by removing the integer con-
straints on all variables.

e.g., in the binary case replace x 2 {0, 1} by 0  x  1.
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Branch and Bound I

The main idea of branch and bound consists in dividing a computationally hard
problem into easier subproblems and systematically exploit the information gained
from solving these subproblems.

Tree search where the tree is built using three main steps:

Branch Pick a variable and divide the problem in two subproblems at this
variable.

Bound Solve the LP-relaxation to determine the best possible objective value
for the node.

Prune Prune the branch of the tree (i.e., the tree will not be developed any
further in this node) if

the subproblem is infeasible
the best achievable objective value is worse than a known optimum
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Branch and Bound: example

max
x

z = 2x1 + 3x2

s.to � 1.3x1 + 3x2  9

3x1 + 0.9x2  18

x1, x2 � 0 2 Z

z
⇤ = 23.89

x
⇤
1 = 4.51

x
⇤
2 = 4.95

(S1)

max
x

z = 2x1 + 3x2

s.to � 1.3x1 + 3x2  9

3x1 + 0.9x2  18

x1  4

x1, x2 � 0 2 Z

(S2)

max
x

z = 2x1 + 3x2

s.to � 1.3x1 + 3x2  9

3x1 + 0.9x2  18

x1 � 5

x1, x2 � 0 2 Z
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Cutting plane

The main idea of the Cutting plane algorithm consists in an iterative reduction of
the feasible region:

solve LP-relaxation and obtain fractional solution

add a new constraint (cut) that removes the fractional solution from the
feasible set of the LP-relaxation
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Cutting plane: example
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Example MILP Problem: Unit Commitment1

Decision on when to produce power and how much to produce in order to meet a
demand forecast and minimize the associated costs over a planning horizon T .

Constraints

Power balancing between production and demand

Operation and capacity constraints.

Case Studies

Simplest setting

Quantized power-levels along with Minimum-up and down-time

1Link to YALMIP
Luigi Glielmo (GRACE, UniSannio) Intro to Optimization June 30, 2021 58 / 63

https://yalmip.github.io/example/unitcommitment/


Example MILP Problem: Optimization of Energy Grid

The plant is formed by:

Two distributed generators

Pmax,1 = 20 [MW]
Pmin,1 = 5 [MW]
c1 = 14 [AC/MW]
OM1 = 1 [AC]
Pmax,2 = 12 [MW]
Pmin,2 = 2 [MW]
c2 = 24 [AC/MW]
OM2 = 2 [AC]

A thermal energy storage

Xs,min = 0 [MWh]
Xs,max = 50 [MWh]
OMs = 1 [AC/MW]
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Example MILP problem: optimization of energy grid

Microgrid composed by

1 energy storage unit

2 distributed generators (DG)

Decision variables

Continuous

stored energy level (Xs)

power level of the DG units (Pi, with
i = 1, 2)

power exchanged (positive for
charging) with the storage unit (Ps)

Integer (binary)

discharging(0)/charging(1) mode of
the storage unit (�s)

o↵(0)/on(1) state of a DG unit (�i,
with i = 1, 2)
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Example MILP problem: optimization of energy grid

The control strategy can be formulated as an optimization problem with the cost
function representing microgrid running costs over the planning horizon.

minimize

TX

k=1

c1P1(k) + c2P2(k) +OM1�1(k) +OM2�2(k) +OMsPs(k)

subject to:

power balancing for the electric loads Ps(k) = P1(k) + P2(k)�D(k)

energy storage dynamic (ideal case with unit e�ciency)
Xs(k + 1) = Xs(k) + Ps(k)

physical bounds Xs,min  Xs(k)  Xs,max

operation constraints Pmin,i ⇤ �i(k)  Pi(k)  Pmax,i ⇤ �i(k) i = 1, 2.

D output of a forecast service
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Example MILP Problem: optimization of energy grid

The control strategy is set with a sample time of 1 h and a planning horizon of 24 h.
Figure shows the electricity power demand over the simulating horizon.
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Example MILP Problem: optimization of energy grid
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