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Scope of hybrid dynamical systems (HDSs) research
HDSs combine continuous states and discrete states dynamics.

HDSs

Power networksMechani-
cal system

Digital control

Genetic networks Multi-mode
control

Switching
circuits
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Motivation and approach

Common features in applications:
• Variables changing continuously (e.g., physical quantities) and discretely

(e.g., logic variables, resetting timers);
• Abrupt changes in dynamics (changes in the environment, control decisions,

communication events, or failures).

Driving questions:
• How can we systematically design such systems with provable robustness to

uncertainties arising in real-time applications?

Approaches:
• capture continuous and discrete behavior using dynamical modeling;
• analysis of stability and control design using control theoretical tools;
• numerical (and possible experimental) validation.
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Hybrid dynamical systems

• Descriptive enough to capture the behavior of the system
• continuous states dynamics (physical systems);
• logic components (switches, automata);
• interconnection between logic and dynamics.

• Simple enough for solving analysis and synthesis problem.
• A wide range of system can be modeled within such framework

• Discrete hybrid automata;
• Piecewise a�ne systems;
• Mixed-logical dynamical (MLD) systems.
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Discrete hybrid automata I

• DHA is a hybrid system representation that combines finite state machines
(FSM) for discrete events, switched a�ne systems (SAS) for continuous
evolution, event generator (EG), and mode selector (MS).
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Discrete hybrid automata II

• An SAS is a set of linear systems switched by an integer variable:

xr (k + 1) = Ai(k)xr (k) + Bi(k)ur (k) + fi(k),

y(k) = Ci(k)xr (k) + Di(k)ur (k) + gi(k),

where
• xr œ Xr is the continuous state vector;

• ur œ Ur is the exogenous continuous input vector;

• yr œ Yr is the continuous output vector;

• {A, B, C , D} is a tuple of state space matrices;

• f and g are a�ne o�set values, i œ J ™ N0 is the active mode.

• An EG is a mathematical relation that maps linear a�ne constraints
conditions into logic values

”e(k) = Fe(xr , ur (k), k),
Fe = Xr ◊ Ur ◊ N0 æ B ™ {0, 1}ne ,

where
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Discrete hybrid automata III

• ”e is a binary coded variable describes a discrete event;

• Fe is a mapping relation in a linear hyperplane.

• An automaton is a transition relation among discrete value finite states
according to logical event or guard condition. The transition relation of
the FSM in the DHA is defined as:

xb(k + 1) = Fa(xb, ub(k), ”e(k)),
Fa : Xb ◊ Ub ◊ B æ B ™ {0, 1}ne ,

where
• xb œ Xb and ur œ Ur are the discrete state and input vectors;

• Fa is a deterministic transition relation.

• An MS is a mathematical relation that maps linear a�ne constraints
conditions into logic values:

i(k) = FM(xb, ub(k), ”e(k)),
FM : Xb ◊ Ub ◊ B æ B ™ J .
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Mixed logical dynamical (MLD) system I

• Goal: describe hybrid system in form compatible with optimization software:
• continuous and Boolean variables;
• linear equalities and inequalities.

• Idea: associate to each Boolean variable si a binary integer variable ”i :

[si = true] ≈∆ {”i = 1}, [si = false] ≈∆ {”i = 0}

and embed them into a set of constraints as linear integer inequalities.
• Two main steps:

1 translation of logic constraints into linear integer inequalities;
2 translation of continuous and logical constraints into linear

mixed-integer relations.
• Final result: a compact model with linear equalities and inequalities

involving real and binary variables.
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Mixed logical dynamical (MLD) system II

• By converting logic relations into mixed-integer linear inequalities, a DHA
can be rewritten as the Mixed Logical Dynamical (MLD) system

x(k + 1) = Ax(k) + B1u(k) + B2”(k) + B3z(k),
y(k) = Cx(k) + D1u(k) + D2”(k) + D3z(k),

E2”(k) + E3z(k) Æ E1u(k) + E4x(k) + E5,

where
• x œ Rnr ◊ {0, 1}nb is the continuous and discrete states vector;
• u œ Rmr ◊ {0, 1}mb is the continuous and discrete input vector;
• y œ Rpr ◊ {0, 1}pb is the continuous and discrete output vector;
• z œ Rnz and ” œ Rnd are the continuous and binary auxiliary variables

mode of the system.
• The translation to MLD can be automatized.
• MLD models allow solving MPC, state estimation, and fault detection

problems via mixed-integer programming.
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Mixed logical dynamical (MLD) system III
• MLD equivalences are defined as

Relation Logic MLD Inequalities
NOT (≥) ≥ s 1 ≠ ”

”3 Æ ”1

AND (·) s3 = s1 · s2 ”3 Æ ”2

”3 Ø ”1 + ”2 ≠ 1

”3 Ø ”1

OR (‚) s3 = s1 ‚ s2 ”3 Ø ”2

”3 Æ ”1 + ”2

IMPLY ( =∆ ) s1 =∆ s2 ”1 ≠ ”2 Æ 0

IFF ( ≈∆ ) s1 ≈∆ s2 ”1 = ”2

[s = true] ≈∆ [f (r) Æ 0] f (r) Æ M(1 ≠ ”)

f (r) Ø ‘ + (m ≠ ‘)”

IF-then-else r2 =

;
r1 if s = true
0 if s = false

r2 Æ M”

r2 Ø m”

r2 Ø r1 ≠ M(1 ≠ ”)
r2 Æ r1 + m(1 ≠ ”)

where M is a su�ciently large number (for the problem at hand), m is a su�ciently

small number (for the problem at hand), e.g. m = ≠M, and ‘ > 0 is a small tolerance.
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Piecewise a�ne (PWA) system I

• another common class for hybrid systems.
• equivalent to MLD systems.
• have the capability to approximate nonlinear dynamics.
• representation has a set of polyhedral partitions.
• PWA system with bounded states and inputs and s regions

x(k + 1) = Ai(k)x(k) + Bi(k)u(k) + fi(k),

y(k) = Ci(k)x(k) + Di(k)u(k) + gi(k),

i(k) = such that [x(k) u(k)]
Õ

œ Pi ,

with
• Pi = {[x(k) u(k)]Õ : Hi(k)x(k) + Ji(k)u(k) Æ Ki(k)};
• i œ J ™ N0 is the current active polyhedron.
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Piecewise a�ne (PWA) system II
• introduce S Boolean variables si , i = 1, . . . , S, the corresponding binary

variables ”i and the logic constraints

[si = true] ≈∆ [”i = 1]
n

i
si = true ≈∆

ÿ

i
”i = 1

• introduce auxiliary real vectors zi and wi defined by if-then-else rules

zi =
I

Ai(k) + Bu + fi , if ”i = 1
0, otherwise

wi =
I

Cix + Diu + gi , if ”i = 1
0, otherwise;

• convert the relations above into mixed-integer inequalities;
• update the state and output equations

I
x(k + 1) =

q
i zi ,

y(k) =
q

i wi .
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Model predictive control (MPC)

MPC is a control method for handling input and state constraints within an
optimal control setting.

Principle of predictive control

Why to use MPC?
• It handles multivariable

interactions.
• It handles input and state

constraints.
• It can push the plants to their

limits of performance.
• It is easy to explain to operators

and engineers.
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MPC: Mathematical formulation

uN≠1
t

ú = arg min
uN≠1

t

N≠1ÿ

k=0
q

!
xt+k , ut+k

"

s.t. xt+k+1 = q
!
xt+k , ut+k

"
,

xt+k œ Xt+k ,

ut+k œ Ut+k .

The problem is defined by
• objective that is minimized

• e.g., distance from origin, sum of squared/absolute errors, costs,. . .

• internal system model to predict system behavior
• e.g., linear, nonlinear, single-/multi-variable,. . .

• constraints that have to be satisfied
• e.g., on inputs, outputs, states, and linear, quadratic,. . .
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MPC: Mathematical Formulation

• At each sample time:
• measure/estimate current state x(t);
• find the optimal input sequence for the entire planning window N:

• uN≠1
t

ú
= [uú

t , . . . , uú
t+N≠1]

Õ
;

• implement only the first control action u
ú
t .
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HAEOLUS PROJECT

• HAEOLUS – Hydrogen-Aeolic Energy with
Optimised Electrolysers Upstream of
Substation

• Funding of 7 MAC;

• Produce a total of 120 tons of hydrogen

by 2021.

• Raggovidda wind park in Varanger
peninsula (Norway)

• 45 MW built of 200 MW concession;

• Bottleneck to main grid 95 MW ;

• Capacity Factor of 50%.

Luigi Glielmo (GRACE) Haeolus summer school July 1, 2021 17 / 51



HAEOLUS CONTRIBUTION

Dynamic Plant Model
Designed and developed to implement multi-level con-

trollers

Features
• A hybrid system

• Di�erent time scales of physical and market

phenomena
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Plant and scenario for HAEOLUS project

• The standard architecture with 4
layers:

• supervisory layer;
• management layer;
• automation layer;
• physical layer.
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Plant and scenario for HAEOLUS project

• The standard architecture with 4
layers:

• supervisory layer;
• management layer;
• automation layer;
• physical layer.

Luigi Glielmo (GRACE) Haeolus summer school July 1, 2021 19 / 51



Physical layer of HAEOLUS project I
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Physical layer of HAEOLUS project II
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Alternative scenarios I
The International Energy Agency-Hydrogen Implementing Agreement (IEA-HIA)
identified three di�erent use cases regarding the possible operations for wind farm
paired to a hydrogen-based storage system:

• Energy-storage operates for
power smoothing.

• Mini-grid operates for
demand side management:

• islanded mode;
• weakly connected

mode.
• Fuel-production operates

for hydrogen production.
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Alternative scenarios II

Control and optimization problems
• operate devices by means of logic commands (ON, OFF,STB);

• convert/electrify suitable amounts of energy/hydrogen;

• minimize costs for long term profitability;

• fulfill (scenario-dependent) constraints and requirements;

• rely on forecasts while managing the uncertainty.
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MLD modeling of devices operational modes I
Dynamic Modeling

• ON/OFF/STB: modes of the

devices (electrolyzer and fuel

cell);

• ”ON
i , ”OFF

i and ”STB
i : the

devices discrete states;

• ‡—
–i : the state transitions of

the devices;

• the arcs explain the state

transitions.
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MLD modeling of devices operational modes II

• The three logic discrete states of the devices ON, OFF, STB characterize the

model.

• The states have been modeled with mutually exclusive logical variables:

”ON
i (t) + ”OFF

i (t) + ”STB
i (t) = 1.

0 PSTP Pmin Pmax operations

OFF STB

ON

zØPmin

i zÆPmax

i
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MLD modeling of devices operational modes III

MLD constraints of the ON state (”ON)

zØPmin

i (t) =

;
1 Pi(t) Ø Pmin

0 Pi(t) < Pmin

zÆPmax

i (t) =

;
0 Pi(t) > Pmax

1 Pi(t) Æ Pmax

≠Pi(t) + P
min Æ M(1 ≠ z

ØPmin

i (t))

≠Pi(t) + P
min Ø ‘ + (m ≠ ‘)zØPmin

i (t)
Pi(t) ≠ P

max Æ M(1 ≠ z
ÆPmax

i (t))
Pi(t) ≠ P

max Ø ‘ + (m ≠ ‘)zÆPmax

i (t)

Pi(t) can be linked to ”ON
i with inequalities through zØPmin

i and zÆPmax

i

”ON
i (t) =∆ zØPmin

i (t)

”ON
i (t) =∆ zÆPmax

i (t)

≈∆
≈∆

”ON
i (t) ≠ zØPmin

i (t) Æ 0

”ON
i (t) ≠ zÆPmax

i (t) Æ 0
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MLD modeling of devices operational modes IV
MLD constraints of the devices state transitions

OFF

”OFF

STB

”STB

ON

”ON

‡STB
OFF

‡OFF
STB

‡ON
OFF

‡OFF
ON

‡ON
STB

‡STB
ON
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MLD modeling of devices operational modes V

MLD constraints of the devices state transitions
‡ON

OFF(t) ≈∆ ”OFF
(k ≠ 1) · ”ON

(t)

‡ON
OFF(t) ©

Y
]

[

‡ON
OFF(t) Æ ”OFF

(k ≠ 1)

‡ON
OFF(t) Æ ”ON

(t)

‡ON
OFF(t) Ø ”OFF

(k ≠ 1) + ”ON
(t) ≠ 1

OFF

”OFF

STB

”STB

ON

”ON

‡STB
OFF

‡OFF
STB

‡ON
OFF

‡OFF
ON

‡ON
STB

‡STB
ON
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Hydrogen tank dynamics I
System state space model

H(t + 1) = H(t) + ÷e(t)Pe(t)”ON
e (t)Ts ≠ Pf (t)”ON

f (t)Ts
÷f (t)

The hydrogen level dynamics are defined as a function of

• logic variables;

• the hydrogen production e�ciency ÷e(t);

• the hydrogen consumption e�ciency ÷f (t);

and subject to ”ON
e (t) + ”ON

f (t) Æ 1.
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Hydrogen tank dynamics II

MATLAB code of implied operator model

1 LOH = sdpvar (1,T+1,’full ’); % Hydrogen level
2 z_e = sdpvar (1,T,’full ’); % Auxiliary var
3 for k= 1: N_T
4 de = binvar (2 ,1); df = binvar (2 ,1);
5 F1 = [sum(de)==1, implies (de (1) ,[z_e (:,k) == p_e (:,

k),d_ONN_e (:,k) == 1]);
6 implies (de (2) , [z_e (:,k) ==0, d_ONN_e (:,k) == 0])

];
7 F2 = [sum(df)==1, implies (df (1) ,[z_f (:,k)== p_f (:,k

), d_ONN_f (:,k) == 1]);
8 implies (df (2) ,[z_f (:,k)==0, d_ONN_f (:,k) == 0]) ];
9 Model = [LOH (:,k+1) == LOH (:,k)+( eta_e .* z_e (:,k)*

Ts) -( eta_df .* z_f (:,k)*Ts)];
10 Con= [Con , Model ,LOH (1) == iniLOH , F1 , F2];
11 Con = [Con , minLOH <= LOH (:,k) <= maxLOH ];
12 end
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Hydrogen tank dynamics III

MATLAB code of Big-M model

1 LOH = sdpvar (1,T+1,’full ’); % Hydrogen level
2 z_e = sdpvar (1,T,’full ’); % Auxiliary var
3 z_f = sdpvar (1,T,’full ’); % Auxiliary var
4 for k= 1: N_T
5 z_i = [z_e (:,k);z_f (:,k)];
6 %Big -M formulated Model
7 Const = [Const ,-M*d_ONN_i <= z_i <= M* d_ONN_i ];
8 Const = [Const ,-M*(1- d_ONN_i ) <= z_i -p_i <= M*(1-

d_ONN_i )];
9 Model = [LOH (:,k+1) == LOH (:,k)+( eta_e .* z_e (:,k)*

Ts) -( eta_df .* z_f (:,k)*Ts)];
10 Const = [Const , Model , LOH_HL (1) == iniLOH_HL ];
11 Const = [Const ,minLOH <= LOH_HL (:,k) <= maxLOH ];
12 end
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What are the constraints?

• MLD constraints of the devices states;
• MLD constraints of the devices state transitions;
• power balancing equation;
• feasibility and operating constraints:

• lower and upper power bound on the devices;
• lower and upper hydrogen storage level;
• dump load constraint;

• warm and the cold start times of the devices;
• power ramp up/down bounds.
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MPC I

uN≠1
t

ú = arg min
uN≠1

t

N≠1ÿ

j=0
Costs(ut+j

"

s.t.
ut+j œ Ut+j .

• t is the actual time;
• N is the prediction horizon;
• uN≠1

t = [ut , . . . , ut+N≠1]Õ .

At each time step t:
• take measurements from the

plant;
• minimize costs s.t.

constraints;
• use u

ú
t and discard

u
ú
t+1, . . . , u

ú
t+N≠1;

• increment t.
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MPC II

uN≠1
t

ú = arg min
uN≠1

t

N≠1ÿ

j=0
Costs(ut+j

"

s.t.
ut+j œ Ut+j .

• t is the actual time;
• N is the prediction horizon;
• uN≠1

t = [ut , . . . , ut+N≠1]Õ .

Costs given by:
• tracking errors;
• output power smoothing;
• euros payed/earned for

buying/selling energy;
• wearing-out due to modes

switching;
• . . .
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MPC III

uN≠1
t

ú = arg min
uN≠1

t

N≠1ÿ

j=0
Costs(ut+j

"

s.t.
ut+j œ Ut+j .

• t is the actual time;
• N is the prediction horizon;
• uN≠1

t = [ut , . . . , ut+N≠1]Õ .

U given by:
• Pavl , Pe , Pf , ”ON , ”OFF , . . .

Luigi Glielmo (GRACE) Haeolus summer school July 1, 2021 35 / 51

E E
È



Cost functions

Devices cost functions

J(t) =

3
Srep

NH
+ COM

4
”ON

(t)

+ CON
OFF‡ON

OFF(t)

+ CosOFF
ON ‡OFF

ON (t)

+ CSTB
ON ‡STB

ON (t)

+ CON
STB‡ON

STB(t)

+ COFF
STB ‡OFF

STB (t)

+ CSTB
OFF‡STB

OFF(t)

+ c(t)PSTB”STB
(t)

OFF”OFF

STB

”STB

ON ”ON

‡STB
OFF

‡OFF
STB

‡ON
OFF

‡OFF
ON

‡ON
STB

‡STB
ON

where

• Srep: the i-device stack replacement cost;

• COM
: the i-device operation and maintenance cost;

• c(t): the power spot price.
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Output power smoothing (OPS) cost function I
The OPS is achieved by accounting for previously available power values and adequately

evaluating the scheduling of future power ahead of time. The OPS cost function is

minimized through the linear weight cost term

OPS cost function

Js(t) =

N≠1ÿ

j=0

·Bÿ

·=1

Êt+j,· y t+j,·

where

• y t+j,·
is the bound on the di�erence of past and future available power value;

• Êt+j,·
is a weighting factor with · runs within the set {1, . . . , ·B}.

y t+j,·
t is subject to the following constraint

y t+j,· Ø 0

y t+j,· Ø |Pavl(t + j) ≠ Pavl(t + j ≠ ·)| ≠ ȳ·

• ȳ·
is a threshold of the grid operator.

Luigi Glielmo (GRACE) Haeolus summer school July 1, 2021 37 / 51

Orate



Cost functions
One goal of the system is to track the load demand with the available power. The load

tracking (LT) cost function is given by the mismatch between Pref and Pavl as

LT cost function

Jl(t) =

N≠1ÿ

j=0

1
Pavl(t + j) ≠ Pref(t + j)

22
.

where

• Pavl is the smoothed available power;

• Pref is the local load demand.

The total cost function at time t is given by

Total cost function

J(t) =

N≠1ÿ

j=0

fllJl(t + j) + fleJe(t + j) + flf Jf (t + j).

where

• fll , fle and flf are positive weighting scalars.
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Multi-objective optimization I

min
Ó

Js(t), J(t)
Ô

s.t.
System constraints,
Power smoothing constraints.

The problem is recast sequentially (two stage sequential optimization)

1 give unconditional priority to the OPS problem;

2 pass the optimal value Jú
s of OPS as a further constraint in the 2

nd
problem.

1st problem

min Js(t)

s.t.

System constraints.

2nd problem

min J(t)

s.t.

System constraints,
Js(t) Æ Jú

s .
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Test runs (Case I) I
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Figure: Wind and operator power profiles.
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Test runs (Case I) II
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Figure: Smoothed available power profiles.
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Test runs (Case I) III
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Figure: Control response of the devices.
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Test runs (Case I) IV
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Figure: Net hydrogen storage power PH2 = Pf ≠ Pe .
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Test runs (Case I) V
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Figure: Control response of hydrogen storage H.
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Test runs (Case II) I
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Figure: Wind and operator power profiles.
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Test runs (Case II) II
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Figure: Smoothed available power profiles.
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Test runs (Case II) III
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Figure: Control response of the devices.
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Test runs (Case II) IV
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Figure: Net hydrogen storage power PH2 = Pf ≠ Pe .
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Test runs (Case II) V
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Figure: Control response of hydrogen storage H.
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Thanks

• to Muhammad Bakr Abdelghany, Muhammad Faisal, Davide Liuzza, and

Valerio Mariani
• to all partners

• UBFC
• KES
• SINTEF
• Tecnalia
• Hydrogenics
• Varanger Kraft
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