

Hydrogen and the energy transition

Summer School on Control and optimization of renewable and green hydrogen energy systems

June 30th, 2021

Claudio Marcantonini ARERA

Disclaimer: the views and opinions expressed in this presentation are those of the author and do not necessarily reflect those of ARERA

1. The energy transition

- 1.1 From national sectors to an EU energy sector
- 1.2 The third energy package
- 1.3 The Clean energy package
- 1.4 The EU Green Deal

2. Hydrogen

- 2.1 Why hydrogen?
- 2.2 Cost of hydrogen production
- 2.3 The European Commission's hydrogen strategy

1. The energy transition

- 1.1 From national sectors to an EU energy sector
- 1.2 The third energy package
- 1.3 The Clean energy package
- 1.4 The EU Green Deal

2. Hydrogen

- 2.1 Why hydrogen?
- 2.2 Cost of hydrogen production
- 2.3 The European Commission's hydrogen strategy

1.1 From national sectors to an EU energy sector

80s and early 90s

Framework

- Large national infrastructures
- Vertically integrated companies/national champions
- Technological stability: coal, gas, nuclear, hydro

Energy policy and regulation

Done at national level by the government (no regulator)

Priorities:

- security of supply
- provision of energy at a low price

1st and 2nd Energy Package (1996-2003)

- From 96' the EU has gradually liberalized the energy sector
- Competition where possible, regulation where necessary
- Separation of the energy supply chains in:
 - generation and retailing open to competition
 - transmission and distribution: monopolies to be regulated
- Because:
 - Technological evolution in power plants would make easier to invest
 - Policymakers supported competition for reducing cost
 - High public debt

1.2 The 3rd energy package

The 3rd energy package (2009): priorities

1. Consolidation of the market liberalization

- 1.1 Strong unbundling rules
- 1.2 Strong power and independence to NRAs

2. Integration of national markets

2.1 New institutional framework: creation of new EU bodies:

ACER and ENTSOs

- 2.2 **Network codes** to harmonize market and network operation rules at pan-European level
- 2.3 Coordinated infrastructures development: TYNDP

3. Decarbonization and renewable energy

- 3.1 Binding national targets
- 3.2 EU leader on fighting climate change

2020 targets

- 20% of EU final energy consumption from renewable energy
 - Divided in national binding targets
- 2. 20% CO2 emission reduction wrt 1990 levels
 - to be reach mainly with the EU Emission Treading Scheme (ETS)
- 3. 20% improvement in energy efficiency wrt Primes 2007

The 3rd energy package: 10 years later

1. Successful in market integration

ELECTRICITY MARKET COUPLING

Most of the national electricity market are coupled in a single market

The 3rd energy package: 10 years later

1. Successful in market integration

2. High development of REN, in line with the target

Share of electricity production in EU-27

REN electricity capacity

Evolution of net maximum electrical capacity for renewables and renewable waste in EU-27 (MW), 2000-2019

Source: Eurostat (nrg_inf_epcrw)

eurostat

EU progress towards 2020 targets

Source: Euroepan Enviromental Agency

The 3rd energy package: 10 years later

1. Successful in market integration

2. High development of REN, in line with the target

BUT...

The 3rd energy package: new challenges

- Different level of integration and market efficiency among Member States
- Large development of intermittent and locally distributed renewable energy poses new challenges
 - High cost of REN energy policy
 - Need of flexibility and adapting the market design
- Problem of adequacy in some electricity markets: need of capacity remuneration mechanism
- Most final customers are inactive and do not reap the advantage of the free market

3. The Clean Energy Package (2018-2019)

Clean energy package: new legislation

Revision of all the EU legislation in the energy sector **excluding gas**:

- Renewable Energy Directive
- Energy Efficiency Directive
- Electricity Regulation
- Electricity Directive
- ACER regulation
- Risk Preparedness Regulation
- Energy Performance in Buildings Directive

Stronger environmental targets

EU 2030 energy climate strategy

New targets:

- 40% cut in greenhouse gas emissions wrt 1990 levels (Paris agreement)
- 32% of EU final energy consumption from RES
- 32.5% improvement in energy efficiency wrt Primes 2007

Plus the EU has the **long-term target of 80-90%** GHG emission redaction by **2050**

Targets in line with the Paris agreement

- Stronger environmental targets
- New energy governance

New energy governance

Whole system approach

- Integrated 10-years national plans for climate and energy that define targets, policies, and measures
- 5 dimensions: decarbonization, energy efficiency, energy security, internal energy market, R&D

Balance between national flexibility and EU target

- No binding national targets but only at EU level
- Analysis and monitoring of plans by the Commission
- Assignment of powers to the Commission to ensure the collective achievement of EU objectives

- Stronger environmental targets
- New energy governance
- Empowering consumers: Active customers/Renewable self-consumers/Citizens energy community/Renewable energy community

- Stronger environmental targets
- New energy governance
- Empowering consumers: Active customers/Renewable self-consumers/Citizens energy community/Renewable energy community

- Stronger environmental targets
- New energy governance
- Empowering consumers: Active customers/Renewable self-consumers/Citizens energy community/Renewable energy community
- Upholding energy-only market approach but allowing for generation adequacy instruments
- Continuing national market integration with a stronger role for ACER
- Integration of renewable energy into the market

4. The EU Green Deal (2019-present)

Higher ambitions

Stronger environmental targets:

- 55% GHG emissions reduction target by 2030
- 2050 climate-neutrality already in the EU Climate Law
- Actions in all sector of the economy: energy, agriculture, circular economy, transport, international cooperation...
- It will require additional investments of the order of €260 billion per year, equivalent to around 1.5% of 2018 GDP

Stronger financial instruments:

- 25% of the EU budget dedicated to programs dealing with issues related to climate change or the environment to
- 37% of the Next Generation EU recovery fund (750 B€)
- Just transition mechanism with funds from the EU budget and from the EIB (European Investment Bank)

28

Main initiatives to come

More then 40 initiatives planned, among them:

- Revision of the EU Emissions Trading System (ETS)
- Carbon Border Adjustment Mechanism
- Revision of the Energy Tax Directive
- Amendment to the Renewable Energy Directive and Energy Efficiency Directive
- Revision of the Regulation setting CO₂ emission performance standards for vehicles
- Revision of the energy performance of Buildings Directive (EPBD)
- Hydrogen strategy and the revision of the Third Energy Package for gas

- 1. The energy transition
 - 1.1 From national energy sector to an EU sector
 - 1.2 The third package
 - 1.3 The Clean energy package
 - 1.4 The EU Green Deal
- 2. Hydrogen
 - 2.1 Why hydrogen?
 - 2.2 Cost of hydrogen production
 - 2.3 The European Commission's Hydrogen strategy

2.1 Why hydrogen?

Hydrogen production and use today

- Hydrogen is the most widespread element on earth, but it does not exist in pure form
- Main method of production:
 - From fossil sources (methane and coal)
 - From electrolysing
- 70 Mt of hydrogen (2,333 TWh) are produced annually in the world: 76% from methane, 23% coal
- EU production to 280 TWh almost all from methane: 2% of energy consumption
- Almost all hydrogen is currently produced and used locally in the chemical industry and oil refining

Why producing more hydrogen?

- We can produce H2 with low GWG emissions
 - From fossil sources with CCS (but 5-15% of losses)
 - from electrolysis with electricity from a zero-emission sources
- for hard-to-abate sectors where electrification is not the solution
 - the transport sector for heavy vehicles
 - Industry: iron and steel production, ceramics, paper mills
 - residential in areas where electrification is not convenient
- Furthermore, H2 could provide:
 - flexibility to the entire system
 - long-term storage

Why producing more hydrogen?

Source: IRINA

Consumption of H2 and share in final energy in EU decarbonisation scenarios in 2050

Figure 1: Consumption of hydrogen and share in final energy in EU decarbonisation scenarios in 2050

Source: JRC

In most scenarios, H2 and derived fuels add up to between 10% and 23% of the 2050 EU final energy consumption.

Hydrogen: EU scenario for 2050

- There is a significant increase in the volumes of decarbonised gas
- The use of renewable or low-emission gases as energy vectors is estimated to approximately 18% of total final consumption, of which 10% from H2
- The hydrogen produced in 2050 is estimated at 896 TWh and should be used for
 - 40% in transport
 - 10% in the residential sector
 - 38% in industry and
 - 12% as storage in the electricity sector.

Hydrogen: classification

- There are no official classification, but a commonly used nomenclature is:
 - grey hydrogen: production involves GHG emissions
 - blue hydrogen: production involves GHG emissions, but these are (for the most part) captured and stored;
 - green hydrogen: production is carbon neutral
- Other definition
 - renewable hydrogen (or clean hydrogen): hydrogen produced through the electrolysis of water and with electricity from renewable sources or biomass;.

INDEX

2.2 Cost of hydrogen production

Hydrogen: current cost

- - strongly influenced by natural gas prices (21€/MWh for the estimation)
- From methane with CCS: 55-60

 MWh (IEA)
 - the addition of CCS leads to a 50% cost increase for CAPEX, by 10% for fuel.
- From electrolysis 70 and 130 €MWh, (Guidehouse, 2020)
 - influenced by various technical and economic factors:
 - capital costs
 - conversion efficiency
 - electricity costs

Electrolyzer

- Only 2% of H2 is produced by electrolysis (IEA, 2019), but the number of plants is increasing
- In 2019, there were at least 142 active electrolysis plants in the world, with a total capacity of about 40 MW (Thema at al., 2019). Many of these are **pilot projects**.
- The countries with the largest number installed capacity are Germany (30.7 MW) and Denmark (2.53 MW)
- The H2 production plant from electrolysis is often called power-to-hydrogen or power-to-gas

Hydrogen: future cost of H2 from electrolysis

- **Difficult to estimate**, it depends on:
 - on the cost of electrolysers
 - their efficiency and
 - the cost of electricity and
 - the # of hours it works
- A reduction in costs as the number of plants increases for economies of scale and learning by doing (although not as for REN)
- The IEA (2019) estimates that in 2030 with low electricity cost (34€/MWh) the cost are still around **75€/MWh**, considering 4000 hours of operation per year

Hydrogen production cost in 2030

Figure 16. Hydrogen production costs for different technology options, 2030

Notes: WACC = weighted average cost of capital. Assumptions refer to Europe in 2030. Renewable electricity price = USD 40/MWh at 4 000 full load hours at best locations; sensitivity analysis based on +/-30% variation in CAPEX, OPEX and fuel costs; +/-3% change in default WACC of 8% and a variation in default CO₂ price of USD $_{40}$ /tCO₂ to USD $_{0}$ /tCO₂ and USD $_{100}$ /tCO₂. More information on the underlying assumptions is available at www.iea.org/hydrogen2019.

Source: IEA 2019. All rights reserved.

\$ 1/kg of hydrogen was considered equivalent to 25,5 €/MWh

Hydrogen infrastructure

- H2 can be transported by lorries and pipelines
- Use of natural gas infrastructure:
 - H2 is different from natural gas: the gas infrastructure may require refurbishment
 - Most of end-use appliances cannot be used with H2
- Blending: mixing H2 natural gas in limited quantities
 - % blending that can be introduced without adaptations depends on many technical factors
 - The maximum % of H2 is considered 15% at most.
- Full repurposing of natural gas to 100% H2
 - Much lower cost than building new infrastructure

Hydrogen acceptance and blending thresholds

Source: ACER based on NRAs and TSOs input

INDEX

2.2 The European Commission's Hydrogen strategy

Hydrogen strategy: objectives

- The European Commission (EC) published in July 2020 the Hydrogen strategy, and by the end of 2021 it will propose a new gas legislation
- Priority on renewable H2
- 3 phases:
 - 2020-2024: installation of at least 6 GW of electrolysers to decarbonise the existing hydrogen production; **local infrastructure**; encouraging both supply and demand;
 - 2. 2025-2030: installation of at least 40 GW of electrolysers; start to develop an **EU-wide hydrogen infrastructure**
 - 3. 2030-2050: renewable hydrogen technologies should reach maturity and be implemented on a large scale.
- Blending is not seen this as a long-term solution
- Stop investing EU funds on natural gas infratructure

Hydrogen strategy: investment

- Large investment needed by 2030:
 - 24-42 billion euros in electrolysers
 - 220-340 billion euros to connect
 - 65 billion euros for the transport, distribution and storage of hydrogen
- Need of public support (revision of the state aid framework): direct and transparent market-based policy
- Need of EU-wide instruments: minimum quotas for renewable hydrogen; common carbon standards for the promotion of hydrogen production plants, a strengthening of the ETS.

Planned electrolysers' capacity in 2030

Source: ACER

Open issues

- How to support the development the H2 sector?
 - Avoid the mistakes made for RES policy
 - Need to mobilize private investment
- How to support efficient investment in H2 infrastructure?
 - Need of integrated planning
 - There may be different decarbonization solutions
- How to regulate the H2 sector?
 - Very different situation from when EU started regulating electricity and gas

ACER-CEER documents on hydrogen

- Adopt a gradual and flexible regulatory approach to developments of the hydrogen sector
- Apply a no-regrets policy for investment decisions
- Respect the beneficiary-pays principle for infrastructure investment
- Guarantee consumer rights regardless of the energy carrier
- Not copy and paste gas regulation

Documents:

- CEER Response for the European Commission, 22 June 2021
- ACER-CEER, When and How to Regulate Hydrogen Networks?, 7
 February 2021
- CEER ACER, Regulatory Treatment of Power-to-Gas, 11 February 2021