

# Challenges of renewable energy integration into power systems

#### **Alessandra Parisio**

Haeolus Summer School *"Control and optimization of renewable and green hydrogen energy systems"*, 30 June - 1 July 2021





# Aim and intended learning outcome

#### **Main Aim:**

 Explore the main concepts and challenges behind smart grids and lowcarbon networks, two prominent changes in power systems

#### **Main Intended Learning Outcomes:**

- Describe what is meant by smart grids and low-carbon technologies
- Explain the key planning and operational issues of low carbon electricity systems



#### **Outline**

- Introduction to smart grids and low-carbon technologies
- Challenges of the integration of renewable energy resources into the power grid
  - ✓ Long-term security
  - ✓ Short-term security
  - ✓ Market
- Possible solutions



## **Questions to start with**

What is a *smart grid* and why we need it?









### A smart grid is...

...an electricity grid that develops to support an efficient, timely transition to a *low carbon economy* to meet *carbon reduction* targets, ensure energy *security* and wider energy goals while *minimising costs* to consumers. It will *empower and incentivise consumers* to manage their demand, adopt new technologies and minimise costs to their benefit and that of the electricity system as a whole.

Source: © Crown copyright 2014, Department for Business, Energy & Industrial Strategy & Ofgem- Smart Grid Vision and Routemap, Open Government Licence: <a href="https://www.nationalarchives.gov.uk/doc/open-government-licence/">www.nationalarchives.gov.uk/doc/open-government-licence/</a>

...an electricity network system that uses *digital technology* to monitor and manage the transport of electricity and coordinate the needs and capabilities of all generators, grid operators, end users and electricity market stakeholders in such a way that they can *optimise asset utilisation* and operation and, in the process, *minimise both costs and environmental impacts* while maintaining *system reliability*, *resilience and stability*.

Source: © OECD/IEA 2015 International Energy Agency - Technology roadmap smartgrids, IEA Publishing, Licence: www.iea.org/t&c



# Another definition of a smart grid

The use of <u>information processing</u>, <u>communication and control</u> in the power grid to:

- enable informed participation by consumers
- accommodate all generation and storage options
- optimise asset utilisation and operating efficiency
- minimise costs and emissions
- provide robustness and resiliency to disturbances









#### Why do we need to change?

Can't we just keep on doing business as usual?

#### The International Energy Agency has estimated that

- Energy consumption worldwide grew by 2.3% in 2018, nearly twice the average rate of growth since 2010. The biggest gains came from natural gas (nearly 45% of the increase)
- Fossil fuels met nearly 70% of the growth
- Renewables grew by over 4%, not fast enough to meet the demand increase
- CO<sub>2</sub> emissions rose 1.7% in 2018 and hit a new record

Based on current policies in 2037 cumulative energy-related emissions will exceed the carbon budget required to hold temperature increases below 2°C. Emission reductions of a further 470 Gt will be needed by 2050 to reduce warming to 2°C.



#### **Global energy-related CO<sub>2</sub> emissions by source**



Source: International Energy Agency, Report 2019 (https://www.iea.org)



#### **Annual energy-related CO2 emissions**



capture in industry

Source: IRENA (International Renewable Energy Agency), Report 2018



# Renewable capacity additions by country/region 2019-2021



Source: International Energy Agency, Report 2020 (https://www.iea.org)



# Low-carbon technologies

Produce power with lower amounts of carbon dioxide emissions than conventional power plants

- Renewable technologies
- Carbon capture and storage
- Combined Cycle Gas Turbine
- Nuclear, ...









# Renewable technologies

## First-generation technologies

- Emerged from the industrial revolution at the end of the 19th century (Manchester), to replace in part more expensive coal-fired steam-based systems
- Include hydropower, biomass combustion, and geothermal power









# Renewable technologies

# Second-generation technologies

- Include solar heating and cooling, wind power, modern forms of bioenergy, and solar photovoltaics
- Entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s









### Renewable technologies

- Third-generation technologies
  - Under development
  - Include advanced biomass gasification, concentrating solar thermal power, and ocean and tidal energy









# Wind (and solar): are they the solution?













#### Can we trust this?



Ten minute-mean real power exported from a 10MW wind farm over a month



### Impact on...

- Long term security
  - Generation adequacy
  - Capacity credit of wind
- Short term security
  - Balancing
  - Spinning and standing reserve
- Energy market









# What is meant by variable generation

Variable renewable energy is a renewable energy source that is nondispatchable due to its fluctuating nature, like wind power and solar power, as opposed to a controllable renewable energy source such as hydroelectricity, or biomass

How intermittent is conventional thermal generation?



## **Long-term security**

- <u>Generation adequacy</u>: capability to meet demand with a certain level of reliability of supply
- LOLP (Loss of Load Probability) widely used:
  - Probability of peak demand exceeding available generation
- How do I assess the adequacy of conventional generation?
  - Generators are subject to failures (<u>intermittent</u>)
  - Capacity Outage Probability Table (COPT)
  - Excess installed capacity above expected peak demand (<u>capacity margin</u>)









# **Determining the capacity margin**



- The higher the margin, the lower the LOLP
- Generation capacity **adequate** if LOLP meets threshold level (e.g., 9% in the UK)



# **LOLP versus capacity margin**





### **Capacity credit**

<u>Capacity credit</u> (or capacity value): measure of the amount of load that can be served on an electricity system by variable plants with no increase in the LOLP or other similar index.









# Implications of capacity credit

Necessary to retain a significant proportion of conventional plant to ensure that the security of supply



- 30GW wind requires 34GW backup
- 30GW wind displaces 3.5GW conventional plant



# Implication of capacity credit

- Wind or solar may displace a significant amount of energy produced by large conventional plant, but relatively small capacity
- It will therefore be necessary to retain a significant proportion of conventional plant to ensure that the security of supply is maintained
- Thus, wind or solar rich systems will feature an increasingly large generation capacity margin which exceeds demand by a significant amount



#### **Short-term security**

- Balancing production and consumption in and close to real time
- System variables are total generation, total load and net interchange with other systems





# **Balancing production-consumption**

- If production = consumption, frequency remains constant
- Excess load causes a drop in frequency
- Excess generation causes an increase in frequency
- System operator must maintain the frequency within limits
- Frequency deviations must be corrected quickly so the system can withstand further problems









# **Example of imbalances**





## **Balancing services**

- Regulation service
  - Provided by generating units with a governor
- Load following service
  - Provided by generating units that can respond at a sufficient rate
- Reserve services
  - Spinning reserve
  - Standing reserve



#### **Classification of balancing services**

- Regulation and load following services
  - Almost continuous action
  - Quite predictable
  - Preventive security actions
- Reserve services
  - Use is unpredictable
  - Corrective security actions









## **Balancing challenges**

- Variable generation (e.g., wind, solar) is non-dispatchable
- Variable generation increases reserve and balancing costs
- Main drivers are:
  - Forecast lead time and balancing time scales
  - Magnitude of fluctuations to be managed
  - Availability of reserve options
  - Start-ups and plant dynamics
- Balancing and reserve options will also impact on
  - Renewable energy curtailment
  - Emissions



# **Relevant generator characteristics**

| Parameter                                            | Nuclear  | Coal      | CCGT      | OCGT      | Pumped<br>hydro<br>storage |
|------------------------------------------------------|----------|-----------|-----------|-----------|----------------------------|
| Minimum Stable Generation (P <sub>min</sub> ) [p.u.] | 0.5-0.6  | 0.2-0.4   | 0.15-0.5  | 0.2-0.5   | 0                          |
| Efficiency [%]                                       | 32-33%   | up to 48% | up to 60% | up to 40% | 70-85                      |
| Minimum up time (T <sub>up</sub> ) [h]               | 36       | 20        | 6         | 4         | 0                          |
| Cold start (T <sub>down</sub> ) [h]                  | 24       | 10        | 4         | <0.1      | 0                          |
| Technically feasible cold start [h]                  | up to 48 | 5         | 3         | <0.1      | 0                          |
| Technically feasible ramp [%/min]                    | 10       | 4         | 4         | 12        | 40-100                     |
| New power plant ramp [%/min]                         | 10       | 6         | 8         | 20        | 40-100                     |



## Illustrative example

Wind installed 26,000 MW

Expected wind output 12,000 MW

Reserve scheduled by TSO6,500 MW

Demand 25,000 MW

Inflexible generation (nuclear and coal)

Must run8,400 MW









## Illustrative example

- Reserve options:
  - 26 CCGT units (spinning)

Rated output

550 MW

Min stable generation (MSG)

300 MW

» (each generator provides 250MW of reserve while generating 300MW)

OCGT capacity (standing)

2,000 MW









# **Synchronised reserve only**

- 26 CCGT units need to run
  - Synchronised Reserve = 6,500 MW
  - Power delivered = 7,800 MW
- Power output:

Must run 8,400 MW

CCGT 7.800 MW

Wind 12,000 MW

TOTAL 28,200 MW

Surplus wind of 3,200 MW





# **Synchronised + standing reserve**

- Standing Reserve (OCGT or storage) 2000MW
- 18 CCGT units need to run
  - Synchronised Reserve = 4500MW
  - Power delivered = 5400MW
- Power output:
  - Must run 8,400MW
  - CCGT 5,400MW
  - Wind 12,000MW
  - TOTAL 25,800 MW

Surplus wind of 800 MW





# **Comparison of reserve options**





## **Capacity factor**

<u>Capacity factor</u>: energy produced by a generator as a percentage of that which would be achieved if the generator were to operate at maximum output 100% of the time

- Capacity factors of base load thermal generators ~ 85%
- Capacity factors of wind turbines ~ 20% 40%









## **Generation mix with wind power plants**



Source: © OECD/IEA 2015 *Projected Costs of Generating Electricity*, IEA Publishing. Licence: <a href="www.iea.org/t&c">www.iea.org/t&c</a>. Available at: <a href="https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf">https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf</a>



## **Prices and capacity factors reduction**



Source: © OECD/IEA 2015 *Projected Costs of Generating Electricity*, IEA Publishing. Licence: <a href="www.iea.org/t&c">www.iea.org/t&c</a>. Available at: <a href="https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf">https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf</a>



# **Energy market**

- Marginal producer.
  - Sells this last unit
  - Gets exactly its bid
- <u>Infra-marginal producers:</u>
  - Get paid more than their bid
  - Collect economic profit
- Extra-marginal producers:
  - Sell nothing





#### A market sketch without renewables

- Nuclear, coal, CCGT, OCGT and Diesel with respectively
- Marginal costs of 10£/MWh, 15£/MWh, 20£/MWh, 50£/MWh and 70£/MWh
- Maximum capacity of 500MW, 500MW, 300MW, 100MW, and 50MW
- MSG=0 for all generators
- Inelastic demand at 3am (800MW), 11am (1200MW), and 6pm (1400MW)





#### A market sketch with renewables







#### **Effect of variable sources**

- Generation from renewable sources is variable
- Market prices become more variable and volatile
- Power from variable generation might need to be curtailed
- Base load producers might be unable to cover their costs









#### **Possible solutions**

- New market structures
- New flexibility options (e.g., dispatchable power plants, demand response, energy efficiency, energy storage facilities)
- New balancing services
- New management and operational tools
- New multi-energy approach (interaction with other energy sectors)

It's not only about electricity - Worldwide





## **Special acknowledgement**

# Prof. Pierluigi Mancarella

Chair of Power Systems, University of Melbourne, Australia





#### **THANK YOU!**

**ANY QUESTIONS?**