

Outline

Motivation

Hydrogen as Energy Storage

The Haeolus Project

Grid Services and Hydrogen

Outline

Motivation

Hydrogen as Energy Storage

The Haeolus Project

Grid Services and Hydrogen

Renewables are now the cheapest energy sources

Source: Lazard LCOE Analysis 2020

Flexibility of Power Generation

Uncontrollable renewable power causes dispatching problems

Baseload (inflexible, constant):

- Coal
- Nuclear

Flexible:

- Gas turbines
- Hydro

New renewables:

- Tidal (scheduled)
- Solar (pprox predictable)
- Wind (almost random)

The California Duck Curve

Hydrogen's Role

- Production of hydrogen is highly flexible
- Hydrogen demand can become significant
- Focus on professional and heavy-duty uses
 - Taxis
 - Trucks
 - Ships
 - Trains
 - Planes (short- to mid-range)
 - Energy export
- Private EVs will likely stay on batteries

Alstom's iLint hydrogen train

Outline

Motivation

Hydrogen as Energy Storage

The Haeolus Project

Grid Services and Hydroger

Key Hydrogen Properties

- The lightest element in nature: one proton, one electron
- In native state, H₂ is a very light gas: 12 Nm³/kg
- Very reactive with a weak H-H bond
- Wide explosion range in air, 4% to 75%; can ignite w/o spark
- High energy density: 33 kWh/kg for reaction with oxygen to give water
- The most common element in the universe...
- Yet, not to be found natively on Earth: we have to make it!

Hydrogen Production

- Most produced by NG reforming, but...
- Electrolysis is key for renewables: split H₂O with electricity into H₂ and O₂
- Two commercial technologies:

Alkaline mature, efficient, proven PEM flexible, fast, compact

- Solid oxide: high-temperature, in research
- 2020 targets: 52 kWh/kg, 2 M€/(t/d), 2 s hot start,
 30 s cold start

Hydrogen vs. Hydro Power

- Hydroelectric dams
 - Large-scale plant and investment
 - Major impact on local geography, can cause protests
 - LCOE 20-50 US\$/MWh
 - High efficiency, fast response
 - ⇒ Use whenever possible
- Hydrogen
 - Can be deployed anywhere
 - Can export power as hydrogen
 - Lower efficiency, but still fast response
 - ⇒ Use when hydro is unfeasible
 - » it's actually a lot of cases

Hydrogen vs. Batteries

Batteries

- Store excess energy
- Compensate for wind
- Smooth power output
- High efficiency
- ⇒ Re-electrification

Hydrogen

- Store excess energy
- Modulate production
- Export hydrogen
- High storage capacity
- ⇒ Large scale

Hornsdale Power Reserve 129 MWh, 100 MW, 56 M€

Outline

Motivation

Hydrogen as Energy Storage

The Haeolus Project

Grid Services and Hydroger

Raggovidda Wind Park

Berlevåg municipality, Varanger peninsula, Troms & Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW

Raggovidda Wind Park

Berlevåg municipality, Varanger peninsula, Troms & Finnmark county

- The Raggovidda wind park:
 - 45 MW built of 200 MW concession
 - Neighbour Hamnafjell: 50 MW / 120 MW
 - Bottleneck to main grid is 95 MW
 - Total Varanger resources about 2000 MW
- Capacity factor 50 %
- Local consumption max. 60 MW
- Local economy based on fishing
- Partner operator of park & grid:

The Haeolus Project

- EU project, budget 7.6 M€
- Electrolyser beside Berlevåg harbour
- Capacity: 2.5 MW or 1 t/d @ 30 bar
- Production started in June 2021
- New 10 km power line from Raggovidda
- Virtually "inside the fence"
- · Accessibility by road or sea
- Partner electrolyser manufacturer:

HYDROG(€)NICS

SHIFT POWER | ENERGIZE YOUR WORLD

The hydrogen tank outside the containment building

Prospective Uses

What should we do with our hydrogen?

- Cars
- Boats
- Ships
- Planes
- Export to Svalbard
- Ammonia
- Biogas upgrade

Main problem: investment deadlock

Breaking the Deadlock

Also known as the "chicken-and-egg" problem

- Hydrogen suppliers
 - Energy companies
- Hydrogen users
 - Transport companies
 - Shipping companies
 - Public authorities
 - Industry
 - Private citizens
- Suppliers need demand to make money
- Users need offer for their equipment
- Is the other side going to hold out?

Breaking the Deadlock

Also known as the "chicken-and-egg" problem

- Hydrogen suppliers
 - Energy companies
- Hydrogen users
 - Transport companies
 - Shipping companies
 - Public authorities
 - Industry
 - Private citizens
- Suppliers need demand to make money
- Users need offer for their equipment
- Is the other side going to hold out?

- We must start with infrastructure
- How do we make it viable?
 - Identify key niche
 - Find one big customer
 - Find a "side hustle"
- Involve the authorities
 - Guarantee demand with buyback of hydrogen equipment
 - Guarantee supply with buyback of hydrogen fuel

Breaking the Deadlock

Also known as the "chicken-and-egg" problem

- Hydrogen suppliers
 - Energy companies
- Hydrogen users
 - Transport companies
 - Shipping companies
 - Public authorities
 - Industry
 - Private citizens
- Suppliers need demand to make money
- Users need offer for their equipment
- Is the other side going to hold out?

- We must start with infrastructure
- How do we make it viable?
 - Identify key niche
 - Find one big customer
 - Find a "side hustle"
- Involve the authorities
 - Guarantee demand with buyback of hydrogen equipment
 - Guarantee supply with buyback of hydrogen fuel

Outline

Motivation

Hydrogen as Energy Storage

The Haeolus Project

Grid Services and Hydrogen

Grid Services

A viable side income for hydrogen production plants

- Balancing markets
 - Keep frequency between 49.9-50.1 Hz
 - Add-remove power to adjust
- Primary reserves (FCR)
 - Automatic
 - Few seconds to start
- Secondary reserves (aFRR)
 - Automatic
 - 30 seconds to start
- Tertiary reserves (FRR-M)
 - Manual
 - Up to 15 minutes to start

Grid Services

A viable side income for hydrogen production plants

- Balancing markets
 - Keep frequency between 49.9-50.1 Hz
 - Add-remove power to adjust
- Primary reserves (FCR)
 - Automatic
 - Few seconds to start
- Secondary reserves (aFRR)
 - Automatic
 - 30 seconds to start
- Tertiary reserves (FRR-M)
 - Manual
 - Up to 15 minutes to start

- FCR/aFRR can be
 - Procured (e.g. Norway, Germany)
 - Mandatory (e.g. Italy, France)
- Remuneration based on
 - Capacity (e.g. Denmark)
 - Activation (e.g. Italy)
 - Both (e.g. Norway)
- Minimum bid sizes
 - 1MW (Norway FCR)
 - 5 MW (Spain aFRR)
- Direction
 - Symmetric
 - Up- or down-regulation

Hydrogen Production with Grid Services

- Electrolyser within a wind park
 - No power import
 - Energy producer at all times
 - Electrolyser power is controllable
- Nominal operation
 - Full electrolyser operation
 - Use all wind power for H₂
 - Income for exported power
- Grid-service operation
 - Throttle electrolyser as needed
 - Reduce hydrogen production
 - Income for exported power
 - Income for grid services

Time

Value of Curtailed Hydrogen

- Price of sold hydrogen is unknown or volatile
 - Often agreed "politically" rather than set by market
 - Agreed-upon quantity may be limited
- Keep spare capacity
 - Ready for market expansion
 - Deployment of new electrolysers takes time
- Monetise this spare capacity
 - Operational income I
 - Hydrogen production H
 - H_o, I_o for nominal, "full power" case
 - H, I for grid-service case

$$v_{\rm H_2} = \frac{I - I_{\rm O}}{H_{\rm O} - H}$$

"Value of hydrogen we did not produce because of grid services"

- Same electrolyser
- Same OPEX/CAPEX
- Easily computable

Data and Method

- Data for wind power from Raggovidda (2017), 0-45 MW
- Data for spot prices and FCR capacity for NordPool, same year
- Data for activated capacity from Statnett
- Electrolyser sizes: Haeolus (2.5 MW) and Raggovidda full scale (45 MW)
- Minimum power 0.3 MW, minimum bid 1 MW
- Symmetric FCR (real) and hypothetical asymmetric FCR
- Calculate I and H and compare

Preliminary Results

With data from Norther Norwegian grid subdivision (NO4)

	Haeolus (2.5 MW)		Raggovidda (45 MW)	
	Production (t/y)	v _{H2} (€/kg)	Production (t/y)	v _{H2} (€/kg)
Reference	362	_	3668	_
Up	308	4.05	3032	3.98
Symmetric	226	2.47	2526	2.86
Down	138	2.32	888	2.29

• EU estimate for green hydrogen: 2.5-5.5 €/kg

• EU 2030 target for green hydrogen: 1.1-2.4 €/kg

• US 2030 target for clean hydrogen: 1 \$/kg

Initial Observations

- All values comparable to production targets for hydrogen cost
 - No large loss, or even profit, by curtailing hydrogen
- Only up-regulation has significantly higher value than spot price (1.75 €/kg)
 - It is not even a "real" FCR service
- Norway has a very small and unprofitable capacity market
 - Rationale: large hydro providing balance
 - Increase in wind power and interconnection may change this
- Spain, France can prove more interesting—Analysis ongoing

Conclusions

- Flexible hydrogen production can ease adoption of renewable energy sources
- Hydro, hydrogen and batteries serve different purposes
- Introducing the "hydrogen economy" is a mostly a coordination problem
- Delivering reserve services to the grid can give idle hydrogen infrastructure something to do while the demand builds up

Conclusions

- Flexible hydrogen production can ease adoption of renewable energy sources
- Hydro, hydrogen and batteries serve different purposes
- Introducing the "hydrogen economy" is a mostly a coordination problem
- Delivering reserve services to the grid can give idle hydrogen infrastructure something to do while the demand builds up

Thank you for your attention!

Technology for a better society

Hydrogen Storage (1/2)

Mobile & On-Board Storage

- Compressed gas (cH₂), 350 bar to 700 bar
 - No self-discharge, resilient
 - Requires compressor, 2 kWh/kg
 - Good for minor amounts
- Liquid hydrogen (LH₂)
 - Critical point 33 K@13 bar
 - Large plant required, 5 to 10 kWh/kg
 - Boil-off and large ATEX zone
 - Good for large amounts, maritime
- Metal hydrides (MH)
 - Volume as LH₂, no odd p or T
 - High weight and cost
 - Only special applications (submarines)

700 bar cH₂ tanks onboard Toyota Mirai

Hydrogen Storage (2/2)

Stationary and Large-Scale Storage

- Low-pressure or cryogenic spheres
- PEM electrolysers produce at 30 bar
 - Can avoid compressor
- Bulk ships for long-range LH₂ export
- Chemical carriers (LOHC, NH₃, ...)
- Salt caverns (geology-dependent)

Hydrogen Use

- Fuel cells: opposite of electrolysers
- Many types (also other fuels):
 - LT-PEM: most developed
 - HT-PEM: (a little) higher temperature
 - Alkaline: good, but CO₂-intolerant
 - Solid-oxide: high temperature
 - Methanol, formic acid, PAFC, ...
- Typical efficiency 50 % to 60 %

