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1 Introduction 
This deliverable presents a review of six conferences contributions and three journal articles 

published in high-level scientific journals.  

The list of publications is given from the oldest to the most recent. 

2 Six conferences contributions 

2.1 Oral presentation  
A presentation given at the Nordic Hydrogen and Fuel Cells Conference untitled “Large-scale hydrogen 

production from wind power in Arctic conditions”. This presentation was done in October 8th, 2018 in 

Reykjavik, Iceland.  

The complete DOI is https://doi.org/10.5281/zenodo.1460454 

The presentation is given in Appendix 1. 

2.2 Oral presentation  
A presentation given at the Input Meeting for Svalbard’s Future Energy Supply untitled “Hydrogen Export 

to Svalbard: Exploiting Stranded Wind in Finnmark”. This presentation was done in November 9th, 2018 

in Oslo, Norway.  

The complete DOI is https://doi.org/10.5281/zenodo.1482894 

The presentation is given in Appendix 2. 

2.3 Poster presentation  
A poster presentation to 12th Conference Exhibition on Energy Transition and Circular Economy which 

took place in Napoli, Italy from 28th to 30th March, 2019. 

The poster presented is given in Appendix 3. 

2.4 Oral presentation  
A presentation given at the Hydrogen i vinden Conference untitled “Visjoner for hydrogen og vind i 

Finnmark”. This presentation was done in March 21st, 2019 in Norway. 

The presentation is given in Appendix 4. 

2.5 Oral presentation  
. A conference article devoted to the International Conference named "2020 Prognostics and Health 

Management Conference” which took place in Besancon, France. This is 12th PHM Conference virtual 

conference which be held in November 9 – 13, 2020.  

The complete citation is M. Yue, Z. Li, R. Roche, S. Jemei and N. Zerhouni, "A Feature-Based 

Prognostics Strategy for PEM Fuel Cell Operated under Dynamic Conditions," 2020 Prognostics and 

Health Management Conference (PHM-Besançon), 2020, pp. 122-127, doi: 10.1109/PHM-

Besancon49106.2020.00026. 

https://doi.org/10.5281/zenodo.1460454
https://doi.org/10.5281/zenodo.1482894
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The full paper is given in Appendix 5.  

 

2.6 Oral presentation  
A presentation given at the International Summit on the Operational Analysis of Wind Farms from 19th 

to 20th November 2020. This was a virtual event.  

The presentation is given in Appendix 6.  

 

3 Three journal articles 
Three journal articles were published in high level quality journals in open access.  

3.1 Control Engineering Practice 
M. Yue, Z. Li, R. Roche, S. Jemei, N. Zerhouni, Degradation identification and prognostics of proton 

exchange membrane fuel cell under dynamic load, Control Engineering Practice, Volume 118, 2022, 

104959, ISSN 0967-0661, https://doi.org/10.1016/j.conengprac.2021.104959. 

The full paper is given in Appendix 7.  

 

3.2 Energies  
Mariani, V.; Zenith, F.; Glielmo, L. Operating Hydrogen-Based Energy Storage Systems in Wind Farms 

for Smooth Power Injection: A Penalty Fees Aware Model Predictive Control. Energies 2022, 15, 6307. 

https://doi.org/10.3390/en15176307 

The full paper is given in Appendix 8.  

 

3.3 International Journal of Hydrogen Energy 
M. B. Abdelghany, M. F. Shehzad, V. Mariani, D. Liuzza, L. Glielmo, Two-stage model predictive control 

for a hydrogen-based storage system paired to a wind farm towards green hydrogen production for 

fuel cell electric vehicles,International Journal of Hydrogen Energy, 2022, ISSN 0360-3199, 

https://doi.org/10.1016/j.ijhydene.2022.07.136. 

The full paper is given in Appendix 9.  

 

https://doi.org/10.3390/en15176307


Federico Zenith

Large-scale hydrogen production
from wind power in Arctic conditions
The H project

SINTEF Mathematics & Cybernetics

Nordic Hydrogen & Fuel Cell
Conference
October 9, 2018
Reykjavík, Iceland
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Motivation

• EU 2030 target: 27 % renewable energy
consumption

– In 2015 it was 13%
– Production is already 26.2 % (2015)
– No renewables in energy imports

• Most renewables produce electricity

• Several are not controllable

• Some are unpredictable

2015 EU consumption
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Constraints of Wind Power

• Hard to predict production

• Capacity factor about 33%

• Need reserve capacity
• Oen, good wind power is found where:

– there is lile hydro potential
– few people live
– the grid is weak
– accessibility is difficult

• All this even more true for offshore wind!
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The Connection between Hydrogen and Wind

• Beyond 20% wind share, value plummets
– Gonzalez et al., Ren. Ener., 29.4 (2003), 471–489

• Hydro is rarely possible

• Baeries are too expensive

• Hydrogen has lower efficiency
• IEA’s HIA task 24 identified 3 main cases:

– Energy storage
– Mini-grid (e.g. islands)
– Fuel production

• Grid services, reserves, target matching…

The Utsira, Norway,
50 kW / 215 kgH2

system
(2004)
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The H Project
http://haeolus.eu - @HaeolusProject

• A FCH2 JU Innovation Action
• Objectives:

– Enable more wind power
– Test multiple use cases
– Demonstrate a 2.5MW system
– Demonstrate remote operation
– Report & disseminate

• Key figures:
– Budget: 6.9M€ (5M€ from EU)
– Time frame 2018–2021
– Capacity 1 t/d
– Production start: late summer 2019

Kick-off in Oslo, January 2018
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The Wind Park
Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

• The Raggovidda wind park:
– 45MW built of 200MW concession
– Neighbour Hamnafjell: 50MW / 120MW
– Boleneck to main grid is 95MW
– Total Varanger resources about 2000MW

• Capacity factor 50%

• Local consumption max. 60MW

• Local economy based on fishing

• Partner operator of park & grid:

9
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The Electrolyser System’s Site
Raggovidda wind park, Berlevåg municipality, Varanger peninsula, Finnmark county

• Located beside Berlevåg harbour

• Compact 2.5MW PEM electrolyser

• 100 kW fuel cell for re-electrification

• New 10 km power line from Raggovidda

• Virtually “inside the fence”

• Accessibility by road or sea

• At least 120 t over 2.5 year

• Partner electrolyser manufacturer: View of Berlevåg,
site highlighted
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Grid Services

• Wind energy production target match
– Currently: prediction outsourced
– 3rd party paid in % of production
– Easily quantifiable potential
– Adjust electrolyser to fulfil target

• Primary, secondary & tertiary reserves
– Electrolysers are easily ramped
– Can acquire slots in all reserves

• Project partner:

Hour Price Volume
NOK/MW MW

1 180 33
2 139 34
3 139 34
4 139 34
...

...
...

18 18 34
19 18 25
20 17 48
...

...
...

Price for primary reserves on
October 3, northern Norway.
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Other Activities

• Remote operation
– Relevant for many wind parks
– Run demonstration from Italy

• Partner soware developer:

• System prognostics
– Reduce on-site inspections
– Optimise maintenance
– Avoid unscheduled stops

• Partner university:

• Dynamic modelling
– Process model & optimisation
– Control synthesis

• Partner university:

University of Sannio
• Control implementation

• Integration with smart grids

• H2 valorisation plan

• Coordinator:

12
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Expected Impact
From Short to Long Term

• Convince Varanger Kra to expand hydrogen production

• Export model to other sites in Europe (other EU projects?)

• Allow deployment of wind power beyond 20%
• Push hydrogen utilisation in the area

– Mobility, industry, etc.

• Contribute to EU renewable targets & energy independence

14



Public Deliverables

Reports (18):

• Raggovidda energy analysis

• Dynamic model & control

• Impact on energy systems, RCS

• Valorisation plan

• Business case analysis

• Road to MAWP 2023 targets

• Techno-economic analysis

• Environmental performance

• Demonstration protocols & data

Other (15):

• Workshop at ECC2019 Naples

• Real-time demo on website

• Plant visit

• Academic seminars

• Student internship

• Presence at industrial fair

15



What to Do with the Hydrogen?
Valorisation Plan: Identified Opportunities

Action Realism Size Gimmick

Svalbard energy supply ✓ ✓ ✓
Coastal ships (✓) ✓ ✓
Fishing boats ✓ ✓
Ammonia production ✓ ✓
Aquaculture (✓) ✓
Fast passenger boats (✓) ✓
Cars ✓ ✓
Regional mini-buses ✓
Waste collection trucks ✓
Backup generators ✓
Snowmobiles ✓
Regional planes ✓ ✓
ZE steel production ✓
Mining and ore processing ✓
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Conclusion

• Hydrogen can boost wind power

• H will test relevant cases
for Europe and beyond

• Many possibilities for hydrogen
use—the most promising still to
develop, though

Thank you for your aention!
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Hydrogen-Aeolic Energy with Optimised eLectrolysers
Upstream of Substation

This project has received funding from the Fuel Cells and Hydrogen 2 Joint
Undertaking under the European Union’s Horizon 2020 research and innovation

programme under grant agreement № 779469.



Hydrogen Export to Svalbard
ExploiƟng Stranded Wind in Finnmark
Federico Zenith, SINTEF MathemaƟcs & CyberneƟcs
Input MeeƟng for Svalbard’s Future Energy Supply
November 9, 2018, Oslo, Norway
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Hydrogen Import to Svalbard

• Not considered in MulƟconsult’s report
• Can exploit beƩer green H2 sources

– Wind in Finnmark
• H2 can be readily imported

– Container soluƟons available
– (IniƟally) also non-green H2?

• Combined heat & power (CHP) fuel cells
– High efficiency (45%+45%)
– Market ready

3



Flexibility & Scalability in Deployment

• Fuel cells are modular
• Can be introduced gradually

– Start with smaller pilot
– Extend later: future-proof
– LNG requires MW-class investment

• Can team up with local renewables later
• Distributed generaƟon several places

– Same efficiency
– E.g. replacing boilers FH1–6
– BeƩer reliability with mulƟple systems

• Can make diesel generators obsolete

Hydrogenics “closet” with
4×33 kW fuel cells
systems.
Each can be replaced
individually.
Already deployed in 1MW
unit i Kolon, Korea (in a 40’
container).

4
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The H��Ê½çÝ Project
haeolus.eu, @HaeolusProject , @Haeolus , Haeolus

• Hydrogen producƟon from wind power
• Similar to Utsira project, but larger: 50 kW⇒ 2.5MW
• Stranded wind power in Varanger

– 320MW concession, 95MW built
– BoƩleneck in Varangerbotn
– Ressurser oppƟl 2000MW

• Norway’s best capacity factor, 50%
• No significant hydro power for storage
• Can import 160MW to maintain H2 producƟon
• Vision: produce and export hydrogen worldwide

6
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https://www.facebook.com/Haeolus/
https://www.linkedin.com/company/haeolus/


H��Ê½çÝ Facts & Plans

• ProducƟon start: summer 2019
• LocaƟon: Berlevåg harbour
• Capacity: 1 ton H2 per day
• Total commiƩed producƟon: 120 tons
• Project duraƟon: 4 years
• Own power line to Raggovidda
• Total budget about 7M€, EU contribuƟon 5M€ Berlevåg and the plant site at the

harbour.
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H��Ê½çÝ ConsorƟum & ObjecƟves

ObjecƟves:
• DemonstraƟon of mulƟple use modes

– Also mini-grid, relevant for Svalbard
• Hydrogen valorisaƟon
• Sale of grid services
• Remote operaƟon
• Control algorithms development
• Minimised maintenance by prognosƟcs
• 33 public deliverables (18 reports)

ConsorƟum:
• SINTEF (coordinator)
• Hydrogenics
• Varanger KraŌ
• Tecnalia
• UniSannio
• UBFC
• KES

8
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Data Sources

• Energy cost from wind in Finnmark: 215NOK/MWh1

• Electrolyser: 9.3MNOK/MW, OPEX 7% derav2

• Compressors: 6MNOK/MWH2
, OPEX 4% derav2

• 40’ container, 780 kgH2
: 3MNOK

• LogisƟcs Berlevåg-Longyearbyen: 10NOK/kgH2

• CHP fuel cells: 25 kNOK/kW, 22 years3

Sources:
1. MulƟconsult LCOE calculaƟon

for Davvi wind power plant
2. Noack et al. (DLR, LBST,

Fraunhofer, KBB)
3. FCH JU’s MulƟ-Annual

ImplementaƟon Plan (MAWP)

10

https://elib.dlr.de/94979/1/2014_DLR_ISE_KBB_LBST_PlanDelyKaD.pdf


Full Deployment with only Imported Hydrogen
All Items are NPV over 25 years with 4% DiscounƟng Rate

Energy costs (262.6 GWh/y) 882MNOK
30MW Electrolysers 279MNOK
Electrolyser OPEX 304MNOK
Compressors 158MNOK
Compressor OPEX 70MNOK
243 hydrogen containers 729MNOK
LogisƟcs over 25 years 789MNOK
Fuel cells in Longyearbyen 212MNOK

Total 3423MNOK
Energy cost 0.91NOK/kWh

• Not very compeƟƟve with alternaƟves…
• … but actually OK kWh price
• 60MW new wind power @ Raggovidda
• Burning some H2 for heat—wasteful
• What can improve in Ɵme?

– Fuel cell cost
– Electrolyser cost and OPEX
– Cheaper H2 storage in Longyearbyen
– Heat savings (−40%)

• It can land at about 2000MNOK

11



Pilot Deployment in ConjuncƟon with H��Ê½çÝ
Adapted to a 1 t/d producƟon in Berlevåg

Investments
Compressor 8MNOK
Fuel cells 16MNOK
10 containers 30MNOK

Total investments 54MNOK
Yearly OPEX
Energy 4.1MNOK/y
LogisƟcs 3.6MNOK/y
Compressor OPEX 0.3MNOK/y

Total OPEX 8MNOK

• Budget within range of an EU demo project
– FCH JU call coming in January…

• Proceed in steps:
– Replace diesel gensets
– Supplement local renewables
– Combine with baƩery storage (day cycle)
– Gradually expand capacity

• OpƟmise baƩery+hydrogen+import
• Finally, take coal plant offline

12



Conclusions

• Hydrogen import to Svalbard is economically viable (0.91 NOK/kWh)
• Hydrogen import is more expensive than alternaƟves, if stand-alone
• Storage and logisƟcs are major expenses; unlikely to drop
• Use import as support to local wind/solar to achieve zero emission
• Gradually introduce hydrogen, complete by 2038 (coal plant decommissioning)

Thank you for your aƩenƟon!
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Hydrogen-Aeolic Energy with OpƟmised eLectrolysers Upstream of SubstaƟon
This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European

Union’s Horizon 2020 research and innovaƟon programme under grant agreement № 779469.
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Technology for a beƩer society



Hydrogen-Aeolic Energy with Optimised eLectrolysers Upstream of Substation 

This project has received funding from the 

Fuel Cells and Hydrogen 2 Joint 

Undertaking  under the European Union’s 

Horizon 2020 research and innovation 

programme under grant agreement No 

779469 

Il progetto HAEOLUS, finanziato dalla UE per il contenuto innovativo, prevede la 

realizzazione di un sistema dimostrativo di produzione ed accumulo 

dell'idrogeno ("elettrolizzatore") prodotto da un impianto eolico situato in 

Norvegia, il Raggovidda Wind Park. 

Il progetto affronta tre importanti argomenti identificati dall’Agenzia Internazionale per 

l'Energia: 

 Accumulo dell’energia 

 Mini-grid 

 Produzione energetica 

Per ognuno di questi aspetti nel progetto saranno sviluppate e sperimentate per circa 4 

anni le strategie operative, ottimizzando le operazioni in funzione delle previsioni 

meteorologiche e del prezzo (variabile) dell'energia, ma anche dei vincoli tecnologici e 

gestionali. 

Tutto il sistema sarà monitorato e controllato a distanza, sia per le difficoltà di accesso al 

sito (oltre il circolo polare artico) sia per verificarne l'affidabilità ed il livello di automazione 

IL PROGETTO 

IL CONSORZIO 

SINTEF 

Il più grande istituto di ricerca indipendente della Scandinavia e leader del progetto 

https://www.sintef.no/ 

UBFC 

Una federazione di università francesi tra cui l’Universitè de Franche-Comtè (UFC) e Université de 

Technologie Belfort-Montbéliard (UTBM) 

http://www.ubfc.fr/  

UNIVERSITA’ DEGLI STUDI DEL SANNIO 

Ateneo nato nel 1990 caratterizzato da eccellenze nei dipartimenti di ingegneria, economia e giurisprudenza 

https://www.unisannio.it/it  

TECNALIA 

Il più grande centro di ricerca ed organizzazione tecnologica in Spagna ed uno dei più grandi d’Europa 

http://www.tecnalia.es/ 

KES 

Una PMI focalizzata sullo sviluppo di soluzioni software innovative in ambito smart city e tecnologie IoT 

http://www.kesitaly.it/ 

HYDROGENICS 

Leader mondiale nella progettazione e realizzazione di sistemi commerciali per la produzione di idrogeno 

https://www.hydrogenics.com/  

VARANGER KRAFT 

Un utility energetica che gestisce il Raggovidda Wind Park 

http://www.varanger-kraft.no 

GLI OBIETTIVI 

PIÙ CASI D’USO ELETTROLIZZATORE DA 2,5 MW GESTIONE REMOTA PIÙ ENERGIA EOLICA DIFFUSIONE 

https://www.sintef.no/
https://www.unisannio.it/it
http://www.tecnalia.es/
https://www.hydrogenics.com/
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Visjoner for hydrogen og vind i Finnmark

- Hydrogen i vinden, 21.03.2019
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Varanger Kraft

1

Haeolus

Hydrogen

3

Visjoner

4

Raggovidda

Vind

2

Agenda
Visjoner for hydrogen og vind i Finnmark

26.03.2019 www.varanger-kraft.no 2

Konserninfo

Nett i Nord

Hydrogen og Vind

i Finnmark 
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Sør-Varanger

(31,25 %)

Vadsø

(21,87 %)

Vardø

(12,50 %)

Tana

(12,50 %)

Båtsfjord

(9,38 %)

Berlevåg

(6,25 %)

Nesseby

(6,25 %)

VK  Nett AS

3300 km nett

16000 leveransepunkt

VK Entreprenør AS

46 Ansatte

VK Marked AS

13000 Kunder
VK Utvikling AS

6000 Kunder

Pasvik Kraft  AS

420 GWh

4 vannkraftverk

VK  Vind AS

191 GWh

(>400 GWh fra 2021)

Varanger Kraft AS

~160 ansatte

Omsatte for 750 MNOK i 2018

Varanger Kraft
Konsernstruktur

VK Hydrogen AS

390 tonn H2 pr/år 

kapasitet i 2020

http://no.wikipedia.org/wiki/Fil:Vardo_komm.png
http://no.wikipedia.org/wiki/Fil:Vadso_komm.png
http://no.wikipedia.org/wiki/Fil:Berlevag_komm.png
http://no.wikipedia.org/wiki/Fil:Batsfjord_komm.png
http://no.wikipedia.org/wiki/Fil:Sor-Varanger_komm.png
http://no.wikipedia.org/wiki/Fil:Nesseby_komm.png
http://no.wikipedia.org/wiki/Fil:Tana_komm.png
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420 V

TEXAS

$126,942

20 kV

Bakgrunn
Nettsituasjon i Nord

26.03.2019 www.varanger-kraft.no 4
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Raggo 1

• ~191 GWh/år – 49% Kap.faktor

• 15 turbiner

• 45 MW

• Capex 604 MNOK (2014)

Raggo 2

• ~215 GWh AEP

• 12 turbiner

• 51,6 MW

• Capex ~450 MNOK

26.03.2019 www.varanger-kraft.no 5

Raggovidda
Produksjon i verdensklasse | 200 MW Konsesjon

103,4 MW ubrukt konsesjon
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Løsningen på

innestengt kraft?

• Hydrogenproduksjon

• Objektiv – Varanger Kraft

• Bidra til dekarbonisering

• Utnytte vindressurs i verdensklasse

• Selge hydrogen – drivstoff, industri

• Objektiv – EU: Haeolus

• Energilagring

• Vindpenetrasjon i energisystemer

• Mini-grid / Nettbalansering

• Remote location

26.03.2019 www.varanger-kraft.no 8
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Haeolus
Partnere

Varanger Kraft
Vindpark

Hydrogenics
Leverandør av elektrolysør og brenselscelle

Tecnalia University
Systemdesign

Univeristy UnniSannio
Dynamisk modellering

SINTEF
Prosjektkoordinator

Universtiy UBFC
Diagnose og prognoser for systemet

KES
Fjernstyring

26.03.2019 www.varanger-kraft.no 10

EU, FCH2 JU
Sponsor
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Haeolus
Teknologi

• PEM - elektrolysør

• 2.5 MW

• Verdens største elektrolysør koblet til vindpark

• Kapasitet – 1 tonn/døgn

• 100 kW Brencelscelle

Prosjekt

• Produsere min. 120 tonn

• Produsere strøm tilbake til nett

• Autonomt og fjernstyrt

26.03.2019 www.varanger-kraft.no 11
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140 kg lagring ved 30 bar (oppstartsløsning)

Naturlig ventilasjon

Bygning

325 m2

Start/stop <30 sekund

Størrelse: minikjøleskap

PEM elektrolysør-stack

2.5 MW fra Hydrogenics

Bra logistikkmuligheter for sjøtransport

Stort areal tilgjengelig

Plassering

Berlevåg, Revnes

Haeolus
Bygning og elektrolysør

26.03.2019 www.varanger-kraft.no 12
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Oktober
Testproduksjon

2022
EU-prosjektet ferdig

November

Ny strømlinje klar

- fullskala produksjon

Anbud og kontrahering

Februar

April

Oppstart bygging

Tidsplan
Haeolus – Oppstart 2019

26.03.2019 www.varanger-kraft.no 13

Videre?

Storskala? 
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Våre fordeler

• Miljøaspektet

• I dag: ~95% av H2 fra karbonholdige kilder

• Vind til hydrogen = grønn hydrogen!

• Konkurransefortrinn

• Billig strøm

• Vindforhold i verdensklasse

• “Grønneste” H2 i verden

• Konkurransedyktig pris?

• Tidlig ute

26.03.2019 www.varanger-kraft.no 16

Kilde: IEA Report October 2017 - Producing ammonia and fertilizers: new opportunities from renewables
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Raggostrøm
Hydrogen til Ammoniakk | Elektrifisering av Svalbard

26.03.2019 www.varanger-kraft.no 17



18

V i n d t i l h y d r o g e n

105 MW til H2-produksjon = ~16.000 tonn H2 / år

49% kapasitetsfaktor

Tilnærmet null “carbon footprint”
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Abstract Proton exchange membrane (PEM) fuel cell has 
been widely used in diverse applications, especially in automotive 
field. However, durability and cost are two principle barriers to 
take PEM fuel cell into wide commercial use. The discipline of 
prognostics and health management (PHM) tends to help against 
this problem. PHM aims at deploying predictive maintenance and 
anticipating degradation mitigation strategies for PEM fuel cell.
This paper focuses on the prognostics of PHM and an adapted 
data-driven fuel cell prognostics approach based on multiplicative
feature decomposition and echo state network is proposed to 
predict the fuel cell degradation behaviour under dynamic 
operation conditions. Experimental data is used to verify the 
effectiveness of the proposed algorithm.

Keywords—Echo state network, Feature decomposition, PEM 
fuel cell, Prognostics

I. INTRODUCTION

Thanks to the reliable use of hydrogen energy, fuel cell 
technology has seen a promising future in vehicular applications. 
Proton exchange membrane (PEM) fuel cell is the most versatile 
fuel cell type used in automotive field thanks to its high energy 
density, relatively low operation temperature and corrosion. 
However, a central issue holding back the critical achievement 
of fuel cell electric vehicles is the durability problem. Analysis 
of the on-road fuel cell electric vehicles data provided by 
National Renewable Energy Laboratory has shown that the 
maximum projected durability has been more than quadrupled 
over the last ten years, increasing from 950 hours in 2006 to 
2,500 hours in 2009, and reaching 4,100 hours in 2016 [1]. In 
2016, the Department of Energy (DOE) Fuel Cell Technologies 
Office made the decision to increase the ultimate target for fuel 
cell durability from 5,000 hours to 8,000 hours, which 
effectively expands the metric so that vehicles can achieve 
150,000 miles in slower-speed driving conditions [2]. An 
increasing demand emerges in improving the durability of PEM
fuel cell systems.

Prognostics and heath management (PHM) is a newly
emerging discipline that performs predictive maintenance and
have started to be applied in PEM fuel cell applications. It is 
deployed to offer feasible solutions to predict and protect the 
integrity of the system and to design control strategies to avoid 
unanticipated operational problems leading to performance 
deficiencies, degradation, and adverse effects to mission safety
[3]. The predictive nature of prognostics provides accurate 
estimation of the remaining useful life (RUL) of the system, 
based on which control and management strategies on the 
operation conditions could be properly designed to avoid further 
degradation of the system. As PEM fuel cell system is such a 
complex multi-physical system whose degradation behaviour is 
difficult to model analytically, data-driven prognostics has been 
widely used in fuel cell PHM studies thanks to its model-free 
nature [4]-[10]. Without any knowledge of physical or chemical
phenomenon, data-driven prognostics method is able to derive 
the behaviour model directly from the available data. To 
perform prognostics for PEM fuel cells, the methods developed 
in most works -
obtained under long-term static operation conditions [10]. In 
these studies, the system response has often been considered as 
the health index. However, practically the PEM fuel cells are 
rarely operated with constant current and the operation 
conditions varied according to the utilisation in automotive 
applications. In this case, the dynamic response of the system 
can no longer be used directly for prognostics [11].  

To solve the difficulties of the prognostics for PEM fuel cell 
operated under dynamic operation conditions, a novel 
prognostics strategy is proposed in this paper. The degradation 
behaviour of the PEM fuel cell is supposed to be multiplicative 
and a feature extraction method is applied to select the
degradation feature as the performance indicator, which is then 
used as the training dataset to train a recurrent neural network 
(RNN) and get the degradation behaviour model. Among 
variable RNNs applied in time series forecasting problems, echo 
state network (ESN) is adapted here to perform prognostics for 
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the PEM fuel cell degradation given the reason that it is simple 
and fast.

The paper is organized as follows: the proposed prognostics 
strategy based on feature extraction and echo state network is 
proposed in Sections II and is validated by a long-term 
degradation experimental dataset in Section III, results are 
presented and discussed in the same section. This work is 
concluded in Section IV.

II. PROGNOSTICS UNDER DYNAMIC OPERATION CONDITION

The proposed prognostics strategy consists of two steps: 
time series feature extraction and prognostics, as shown in Fig.
1. The measure signal is firstly processed and decomposed into 
several components, whereas the trend component is used as the 
extracted degradation feature. The selected feature is then be 
trained through echo state network. When the input is no long 
available, the predicted values are obtained based on the 
previous inputs and the trained network model. Then RULs are 
calculated by defining a corresponding end-of-life (EOL) 
threshold.

Fig. 1. Proposed prognostics strategy

A. Time series feature extraction
For time series data, in many cases, it could be decomposed 

into trend, seasonal or cyclic pattern and the residual. A trend 
exists when there is a long-term, linear or non-linear, increasing
or decreasing tendency in the data, which sometimes could be 
regarded as
that the time series is affected by seasonal factors, which is 
always of fixed and known frequency, while cyclic pattern refers 
to the data exhibit rises and falls that are not of a fixed frequency. 

Decomposition is primarily used for time series analysis and 
forecasting, which can split the time series into different 
components with different features: trend, seasonality, cycles, 
etc. The time series, therefore, could be decomposed in a
structured way, which simplified the forecasting and prediction 

problem comparing to the methods featured by great model
complexity and parameter uncertainty. For example, a 
multiplicative model suggests that the components in a time 
series could be multiplied together as follows:

and an additive decomposition can be written as:

The additive decomposition is used when the magnitude of 
the seasonality does not vary with the level of the time series and 
the multiplicative model is used when the time series increases 
in magnitude and the seasonal variation increases as well. The 
choice of decomposition model should be made by 
reconstructing the time series with decomposed trend and 
seasonal elements to find the one that can better explain the 
variations of the original signal. 

For a PEM fuel cell operated under dynamic operation
conditions, be extracted as a 
degradation indicator as the power provided by the fuel cell can 
no long reach the same level as its initial state due to ageing 
phenomenon. After obtaining a degradation-oriented feature, the 
next step is to train the available measurements and predict the 
future values to calculate the RULs using for anticipative 
maintenance.

B. ESN adapted for prognostics purpose
The Echo State Network (ESN) is a novel recurrent neural 

network proposed by Jaeger in 2001 [12] and has been widely 
applied for time series predictions. ESN is proposed based on
traditional recurrent neural networks, in which the concept of 

that can cope well a wide range of 
nonlinear systems. ESN has demonstrated high prediction 
performance. Comparing with traditional neural networks, it can 
also overcome the problems of large computational complexity, 
low training efficiency and local optimization. The 
implementation of ESN is shown in Fig. 2.

Fig. 2. ESN structure illustration

The state update model of ESN is written as:

(3)

(4)
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where  and are the input and output, is the 
internal state in the reservoir and is its update,

, is the input weight matrix, is the 
recurrent weight matrix in the reservoir and is the output 
weight matrix. The function is generally adopted as the 
activation function of the reservoir, and of the 
output layer could be defined with a simple linear function such 
as . and are initialized randomly and they 
are constant so that there is no need to train them. Only is 
going to be trained by linear regression.

In prediction problem, a training window and a prediction 
window are usually needed to be selected. Training window 
length is the length of the input sequence and the prediction 
window length is how many steps are going to be predicted 
following the input sequence. In fuel cell prognostics 
application, the training window length is decided according to 
the volume of available input data and the prediction window 
is set as 1 when a one-step ahead prediction is conducted.

To adapt ESM for prognostics purpose, the regular 
implementation of one-step ahead prediction is modified in the 
test phase in order to perform multi-time step prediction, shown 
in Fig. 3. Supposing the available measurements are until ,
the data with a length of is used as the input sequence and one 
predicted value is the model output. To continue the prediction, 
the predicted value of the last step is reinjected to the input 
sequence of the next step, so that the input sequence is 
reformulated with a predicted value. Repeat this process until
the test phase is finished.

Fig. 3. ESN adapted for prognostics purpose

III. RESULTS

The proposed prognostics strategy is verified in this section 
with experimental dataset. Results are demonstrated and 
discussed.

A. Experimental data description
The fuel cell stack confronted in the experiment is a 73.5 W 

PEM fuel cell stack, which is designed with the structure of open 
cathode and dead-end anode. A long-term test aiming at 
evaluating the degradation of the fuel cell stack for transport 
application has been launched in FCLAB Research Federation
[9]. Some parameters of the operation condition are listed in 
Table I. The degradation test has run for 1750 hours with a 
current profile obtained from the real motive application, which 
varied from 0 to 8 A. Some details of the current evolution are 
shown in Fig. 4.

TABLE I. FUEL CELL STACK PARAMETERS

Number of cells 15

Active surface area 33.625 cm2

Temperature 25-72

Current density 0-0.238 A/cm2

Anodic relative humidity 0

Cathodic relative humidity 45-55 %
Maximum allowable pressure 
difference between the anode and 
the cathode

0.35 bar

Pressure at air inlet atm

Pressure at hydrogen inlet 1.35 bar

Fig. 4. Current profile

The measured stack voltage is plotted in Fig. 5 and details 
of the stack voltage corresponding to the current length of Fig. 
4 is plotted in Fig. 6.

Fig. 5. Evolution of the fuel cell stack voltage

B. Feature extraction results
As the fuel cell is operated under dynamic conditions, the 
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trend, rather than the magnitude of the stack voltage, is the key 
element to determine the degradation of the fuel cell. As the 
magnitude of the time series may change due to ageing 
phenomenon, multiplicative decomposition is used to 
decompose the signal into trend, seasonal values and residual 
values, as shown in Fig. 7. 

Fig. 6. Details of the stack voltage corresponding to the current length of Fig.
4

Fig. 7. Multiplicative decomposition result

In the decomposition results, the trend refers to the 
decreasing value of the time series, the seasonal values refer to 
the repeating short-term cycles in the series and the residual 
values refer to the random variation in the series, which in our 
case, are the noise in the voltage measurement. Therefore, to 
indicate the degradation of the stack, the trend of the 
decomposition is extracted as the degradation feature and will 
be used to train the prognostics network to calculated the RULs,
shown in Fig. 8.

C. Prognostics results
The data described above is used as the input of ESN. To 

validate the proposed method, the first 30000 points (60% of the 
total) are used as the training set. The number of neurons is set 
as 1000 and the leaking rate is 0.5. After training the available 

data, multiple time steps prediction is done according to the 
proposed prognostics strategy. As the initial weights in ESN are 
randomly allocated, to evaluate the uncertainty of the prognostic 
strategy, the same procedure is repeated 100 times to 
demonstrate the confidence level of the results. Fig. 9 shows the 
100 prediction results. Due to the randomly allocated weights of 
ESN, the predictions cannot have the same trace (represented by 
the coloured lines).

Fig. 8. Degradation feature extraction result

Fig. 9. Prediction results using 60% training set (Colored thin lines: predicted 
results of 100 repetitions)

Assuming the prediction results follow standard Gaussian 
distribution, the confidence interval of the predictions can be 
calculated as:

(5)

where is the mean value of the predictions at time 
instant , is the critical value related to the confidence 
level and is the standard deviation of the predictions at 

. For a confidence level of 95%, equals to 1.96. The mean 
value and the corresponding confidence intervals of the 
prognostics results in Fig. 9 are shown in Fig. 10. 
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It can be seen from the results that the confidence interval of 
95% of the multi-time step long-term prediction have enclosed 
the real end-of-life of the measured values.

Fig. 10. Mean prediction results and confidence intervals of 95%

D. Result evaluation
Root Mean Square Error (RMSE) is used to in this paper to 

evaluate the prediction results, which is commonly used to 
quantify the difference between a forecasted signal and its real 
target. It is calculated as:

(6)

and the normalized RMSE is calculated as:

NRMSE (7)

To compare the results, the prognostics method based on 
particle filtering proposed in [13] has also been implemented to 
get the prediction results. The state model used for predicting is 
written as:

The average RMSE and NRMSE of the results of the both 
methods are calculated by starting prediction at the same time 
instant indicated in Fig. 9. They are compared in Table II.

TABLE II. RESUTLS COMPARISON

Prognostics method ESN Particle filtering

Average RMSE 0.070 0.320

Average NRMSE 0.171 0.675

Dealing with the prognostics-oriented feature shown in Fig. 
8, the ESN-based prognostics method has seen a better accuracy 
than the particle filtering method due to the reason that the ESN 
can better catch the internal characteristics of the data with a 
training process, while the particle filtering method can only 
reach a good prediction when the state space model is properly 

chosen. Besides, the implementation time of ESN is nearly 10 
times faster than running particle filtering.

IV. CONCLUSION

This paper has proposed a feature-based prognostics strategy 
for predicting the degrading performance of the PEM fuel cell 
operated under dynamic conditions. A multiplicative 
decomposition is used to extract the degradation trend from the 
experimental data and a prognostics method based on adapted 
ESN is used to train the behaviour model and predict the future 
states. The prediction results are compared with the particle 
filtering prognostic method and the results show that the 
proposed prognostics strategy has reached better accuracy and 
shorter implementation time.

For the perspectives, the proposed prognostics method can 
be used to estimate RULs and perform predictive maintenance 
in other applications, for example, electrolysers and/or the 
components. Further efforts will be made to improve the 
robustness of the proposed method and discussions on 
prognostics horizon and failure threshold will be undertaken in 
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SISTEMA INTEGRADO EÓLICO-H2

Approach of the study HAEOLUS Project* Concept

• To analyse the operation of the Wind-H2 system and 

the coordinated operation from a techno-economical 

perspective 

• Asses the capacity to provide network services such 

as secondary regulation

• The LCOH2 has been used as the economic 

profitability parameter

• The option of re-electrification by means of a fuel cell 

has not been considered 

• The LCOH2 when the integrated system operates at 

the market price will be used as a basis for comparison 
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New operation strategies that include the hybridisation of generation and storage technologies and the

participation in new services for the different energy, regulation and flexibility markets, and H2
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HAEOLUS Project Concept

• Real data from
➢ Raggovidda provided by 

➢ Moncayuelo provided by Acciona

• Wind Farm costs (CAPEX/OPEX)
➢ CAPEX: 0.9 €/kW, OPEX: 60 €/kW·year

➢ Green tariffs in Norway

• Energy prices affects to the H2 production 

costs (€/t).
➢ The studies are based on 2017 data
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• Technical data provide by Hydrogenics

• Efficiency 

➢ Efficiency curves

➢ Efficiency degradation (%/year)
60,00%

70,00%

80,00%

90,00%

100,00%

110,00%

0 500 1000 1500 2000 2500 3000

Stack Eff Rectifier  + stack Eff Total (20°C) Eff Total (-20°C) Eff

ELECTROLYSER

Electrolyser costs (€/kW)

Year CAPEX OPEX Overhaul costs 
(stack replacement)

2017 1328 60 354

2023 538 60 144

SISTEMA INTEGRADO EÓLICO-H2
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• Techno-economic analysis of scenarios

• Battery technology selection and sizing

• Power flows studies

Energy Storage systems analysis tools

• Algorithms developments and testing

• Design and validation phase

SISTEMA INTEGRADO EÓLICO-H2
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Optimal H2 production on the basis of spot prices

➢ Operation of the electrolyser based on the energy prices, producing H2 when the energy prices is lower 

than a certain threshold. 

Secondary Frequency Regulation 

➢ Participation of the wind farm in the secondary regulation market by modifying the consumption of the 

electrolyser

Twofold objective

➢ Determine the LCOH2 under different operation strategies and scenarios 

➢ Analyze the optimal economical performance of the electrolyser within the wind farm

Scenarios

CASOS DE ESTUDIO
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Considerations

• H2 production cost on the basis of: 
➢ CAPEX & OPEX of the electrolyser 

➢ The cost of electricity consumption 

• The objective 
➢ Optimization of H2 production costs

➢ Production of at least 120t in 2,5 years

Optimal Hydrogen Production Secondary Frequency Regulation

Considerations 

• Operation of the electrolyser based on frequency 

regulation service requirements

CASOS DE ESTUDIO

Operation strategies 

• Operation strategy as demand response system

• Adjusting the operation point of the electrolyser 

so that to offer the required power band for up 

and down regulation

• When upregulation is required the electrolyser 

reduces the consumption accordingly and when 

downregulation it increases the consumption

Operation strategies 

Fixed price threshold

• Different prices have been defined to determine 

the H2 lowest sell price (≥120t-2,5years)

Variable price threshold

• A variable threshold has been defined so that 

the minimum tones (≈120t) are generated 

assuring that the electrolyser works everyday
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Moncayuelo

Frequency RegulationOptimal Hydrogen production. Fixed price threshold
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Conclusiones

La operación del Sistema Integrado Eólico-H2 necesita de un conocimiento profundo de ambos sistemas por 

separado y un control centralizado del Sistema como una única entidad

El Sistema Integrado Eólico-H2 es capaz de proveer servicios de red tales como el control de frecuencia

Viablidad económica

➢ Los costes de operación difieren mucho dependiendo del caso de uso

➢ Producir la mayor cantidad de H2 posible (gran peso del CAPEX). Siempre y cuando haya mercado 

para el H2 generado

➢ Precios de H2 competitivos

➢ Combinación de varias estrategias de operación

Se ha realizado un análisis técnico-económico de un Sistema Integrado Eólico-H2

➢ Reducción de los costes de generación de H2

➢ Provisión de servicios de red => frecuencia

CONCLUSIONES
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A B S T R A C T

Proton exchange membrane (PEM) fuel cell has seen its recent increasing deployment in both automotive and
stationary applications. However, the unsatisfied durability of the fuel cell has barriered in the way of its
successful commercialization. Recent research on prognostics and predictive maintenance has demonstrated
its effectiveness in predicting the system failure and improving the durability of the PEM fuel cell. This paper
contributes to developing a degradation identification method for the PEM fuel cell operating under dynamic
load. A degradation indicator is proposed based on the polarization model and the nonlinear regression method
is applied to extract the degradation feature by segmenting the voltage measurement. To perform prognostics, a
machine learning method based on a multi-step echo state network is developed, in which a sliding window is
used to recursively reformulate the input sequence with predicted values in the prediction phase. The length of
the sliding window is optimized by a genetic algorithm. The proposed method is verified on the experimental
PEM fuel cell degradation data and improves the prediction performance on both accuracy and computation
speed when comparing with other prognostics methods.

1. Introduction

Although fossil fuels still account for the majority of global energy
demand, an energy transition is taking place. Hydrogen, as one of the
cleanest fuels, has driven increasing attention around the world, which
is regarded as a potential solution to today’s environmental problems
and resource exhaustion. Using hydrogen as the fuel, fuel cells can
convert the chemical energy of the hydrogen into electrical energy
directly with an efficiency up to 60 to 80%, while the by-product
is only water. Among different types of fuel cells, proton exchange
membrane (PEM) fuel cells, which take advantages of their fast start-up
characteristics and low operating temperatures, are now commercially
applied in a variety of stationary and embedded applications (Kong,
Bressel, Hilairet, & Roche, 2020).

On the road to the massive commercialization of PEM fuel cells,
enhancing their durability is a prior challenge. The currently achieved
durability of PEM fuel cells in automotive applications is around 4000–
5000 h, while an 8000-hour lifetime is the ultimate goal (Kurtz & Dinh,
2018). Efforts have been made to investigate PEM fuel cell degradation
mechanisms, especially for those operating under dynamic load (Keller,
Ding, Müller, & Stolten, 2017; Luna, Usai, Husar, & Serra, 2017). For
example, dynamic vehicle cycles in rated and idling conditions are

∗ Corresponding author.
E-mail address: meiling.yue@femto-st.fr (M. Yue).

simulated in Wang, Huang, Yu, Wen, and Tu (2018), in which the
PEM fuel cell is subjected to different degradation mechanisms causing
varying stack voltage degradation rate. An accelerated degradation
test is conducted in Han, Han, and Yu (2020) with normal vehicle
driving cycles where signification degradation of the fuel cell has been
observed. Varying thermal/humidity state, changing reactant demand
and voltage cycling are identified as the principal reasons for PEM fuel
cell degradation in dynamic operating conditions (Ren, et al., 2020).

Fuel cell performance loss can be easily observed by evaluating the
stack voltage degradation and under constant operating conditions, it
is measured directly. Various works on PEM fuel cell degradation esti-
mation and prognostics have been conducted using the stack voltage as
the direct health indicator (Jouin, Gouriveau, Hissel, Péra, & Zerhouni,
2014; Ma, et al., 2018). For example, Bressel et al. have proposed
to estimate the health state of the PEM fuel cell using an observer-
based prognostics algorithm and a state variable was created to track
its degradation (Bressel, Hilairet, Hissel, & Ould Bouamama, 2016). Wu
et al. have predicted the stack voltage degradation of PEM fuel cells by
developing a self-adaptive relevance vector machine, which is able to
provide 20 h ahead forecast time (Wu, Breaz, Gao, Paire, & Miraoui,
2016). Both model-based and data-driven prognostics methods have
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been developed. For example, Pan et al. have proposed a model-based
prognostics method based on Electrochemical Impedance Spectroscopy
(EIS) measurement and an analytical equivalent circuit model, in which
the parameters are obtained by linear regression (Pan, Yang, Wang, &
Chen, 2020). A semi-empirical model-based prognostics method based
on the adaptive unscented Kalman filter (AUKF) algorithm has been
proposed in Liu, Chen, Zhu, Su, and Hou (2017) to improve the initial
parameters setting problem. Recent researches have seen increasing
interests in developing data-driven prognostics methods, which can
reflect the inherent relationships between the input and output by
simulating neural networks and avoid the study of complicated physical
mechanisms. Data-driven methods have gradually become the main
methodology for fuel cell prognostics due to their easy-to-use and
flexible modelling properties (Liu, Chen, Hissel, & Su, 2019; Ma, et al.,
2019; Ma, et al., 2020; Zhou, Al-Durra, Zhang, Ravey, & Gao, 2019).
For example, echo state network (ESN) has been deployed to fuel
cell prognostics in recent works thanks to its improve computation
efficiency (Hua, Zheng, Péra, & Gao, 2020; Li, Zheng, & Outbib, 2020;
Morando, Jemei, Hissel, Gouriveau, & Zerhouni, 2017). It was first
applied to the prediction of the mean cell voltage of a degrading fuel
cell in Morando, Jemei, Gouriveau, Zerhouni, and Hissel (2013) where
the accuracy and the computation time are studied regarding the ESN
parameters. Furthermore, for predicting the fuel cell health state, a
multi-reservoir ESN has been developed in Mezzi, et al. (2018) to op-
timize the parameterization process and in Hua, Zheng, Péra, and Gao
(2020), an advanced structure of using moving weight matrix has been
proposed to improve the prediction accuracy. However, these studies
are limited to the stack level and have not fully considered variable and
dynamic loads that may exist in most automotive applications. In those
cases, the degradation of the PEM fuel cells cannot be easily quantified
using the measured stack voltage, whose value is also affected by
system operating dynamics (Li, Jemei, Gouriveau, Hissel, & Zerhouni,
2016). A degradation indicator reflecting intrinsic degradation level
in dynamic operating conditions is required. Some researchers have
proposed hybrid degradation indexes in multi-time scales for online
operation, however, they are limited to certain components and the
accuracy is not satisfying (Liu, et al., 2020). Li et al. have proposed
to represent the dynamic voltage response of the PEM fuel cell using
linear parameter-varying models, and then obtained a real-time health
indicator based on the online identified model (Li et al., 2020). How-
ever, the proposed health index in Li et al. (2020) only evaluates the
overall performance loss and lacks the insights of fuel cell intrinsic
degradation analysis. As the degradation of the fuel cell is related not
only to the ageing phenomenon but also to the time-varying online
operating conditions, developing a degradation identification method
adapted to random external conditions is required.

This paper contributes to proposing an innovative degradation iden-
tification method for the PEM fuel cell operating in real time, especially
under dynamic load. A degradation indicator is proposed based on
the fuel cell polarization model, which is extracted using a non-linear
regression process regardless of the operation conditions. Following
that, a multi-step window-sliding ESN prognostics method is applied
to predict the future evolution of the degradation indicator which is
identified online. The parameterization of the ESN is optimized by a
genetic algorithm that ensures improved prediction performance. The
proposed degradation identification and prognostics methods are veri-
fied with a long-term operation experimental dataset of PEM fuel cell.
As the measurements are obtained non-intrusively and the proposed
method directly uses the output voltage signal, the prognostics can thus
be performed in real time.

The main contributions of this paper can be summarized as follows:

1. A real-time degradation indicator of PEM fuel cells is proposed
that can be extracted in both static and dynamic/random oper-
ation conditions;

2. An enhanced multi-step ESN-based prognostics strategy is
adapted for the prediction purpose;

Table 1
Parameters of the studied fuel cell stack module.
Parameter Value

Active surface 33.625 cm2

Number of cells 15
Nominal pressure at hydrogen inlet 0.35 bar
Nominal output power 73.5 W
Maximum operating temperature 75 ◦C
Maximum current 13.45 A (0.4 A/cm2)
Lowest permitted stack voltage 7.5 V
Pressure interval at hydrogen inlet 0.1 to 0.4 bar

3. The configuration of the proposed prognostics strategy is opti-
mized through a genetic optimization algorithm;

4. The proposed prognostics strategy is validated by the long-term
experimental PEM fuel cell degradation data.

The rest of the paper is organized as follows: Section 2 describes
the long-term fuel cell degradation experiment and the dataset used
to validate the proposed method. Section 3 explains the degradation
identification method and Section 4 presents the enhanced multi-step
window-sliding ESN prognostics strategy. Finally, Section 5 concludes
the paper.

2. Data description

A long-term fuel cell degradation experiment was carried out in
FCLAB Research Federation,1 France, and supported by the PRODIG
project, which received funding from region Aquitaine, France. The test
bench consists of a hydrogen tank, a pressure reducer, purge valves and
hydrogen inlet valves, DC electric loads, DC power modules, two fuel
cell stack modules, a compact data acquisition system and a computer
for control and data logging. The structure of the two-fuel-cell-stack-
module is shown in Fig. 1. One of the stack modules is used for
the dynamic load test, which is supposed to be applied in electric
bicycles and is, therefore, tested using a dynamic load profile acquired
in real operating conditions. The fuel cell stack is designed with an
open cathode and dead-end anode structure and a 24 Vdc air fan is
integrated with the stack for air supply and temperature regulation.
The speed of the air fan is regulated by varying the duty cycle of an
input PWM signal of 25 kHz so that the temperature is controlled at
the optimal level. Moreover, in the cathode side, the air is supplied
with an air fan. With the air fan, sufficient quantity of air is guaranteed
in normal operation. In other words, the fuel cells always work in
the high stoichiometry mode. The pressure in the cathode side is kept
equal to the atmosphere pressure. On the anode side, the pressure of
hydrogen is fixed, and a purge is performed every 30 s. The fuel cells
are self-humidified. Some critical parameters of the studied fuel cell
stack module are listed in Table 1.

The dynamic load profile is obtained in real operating conditions of
a hydrogen bike, which is supplied by a 36 V battery, while the fuel cell
is used as a range extender, connected in parallel with the battery. Both
are used to supply the bike with an average power demand of 53.6 W.
A 2.5-hour operation profile is shown in Fig. 2, in which the fuel cell
starts up to charge the battery until the battery’s state-of-charge (SOC)
gets to a pre-defined threshold and shuts down when the battery is fully
charged. Based on this profile, the current load profile for the long-term
PEM fuel cell degradation experiment is reproduced to reach 1500 h of
operation time. The stack voltage and the current are recorded with
a sampling frequency of 5 Hz and the characterization of the stack is
performed every week by collecting polarization curves.

The measured stack voltage is shown in Fig. 3. Some details of
the stack voltage and the corresponding current profile are plotted
in Figs. 4(a) and 4(b), respectively. Some unintentional stops happen
during the experiment due to test bench incidents. As the degradation
of the fuel cell is on a longer time scale, i.e., thousands of hours, the
stops have little influence on its long-term performance loss.

1 FCLAB Research Federation: http://www.fclab.fr/.
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Fig. 1. Two-fuel-cell-module structure.

Fig. 2. Test profile of a hydrogen bike.

3. Degradation identification

The performance loss process of the PEM fuel cell stack shown
in Fig. 3 may be due to different causes, e.g., varying thermal and
humidity state, fuel starvation, cycling with large voltage dynamics,
etc. It is hard to represent its performance loss by the stack voltage
evolution as it is also dependent on the load characteristics and system
dynamics. Confronted with this problem, a degradation indicator is
proposed in this section to evaluate the degradation of the PEM fuel
cell operating under such dynamic load.

3.1. Fuel cell polarization model

The polarization test is a common method to characterize a fuel
cell. Polarization curve displays the stack voltage output 𝑉𝑓𝑐 against
its operating current 𝑖. The polarization curve model of a 𝑛-cell fuel
cell can be built as the reversible cell voltage 𝑉0 subtracting several
irreversible losses including the activation losses and the crossover

Fig. 3. Stack voltage evolution in the dynamic operating test.

losses 𝑉𝑎𝑐𝑡+𝑐𝑟𝑜𝑠𝑠, the ohmic losses 𝑉𝑜ℎ𝑚𝑖𝑐 , the concentration losses 𝑉𝑐𝑜𝑛𝑐 :

𝑉𝑓𝑐 = 𝑛𝑉𝑐𝑒𝑙𝑙 = 𝑛(𝑉0 − 𝑉𝑎𝑐𝑡+𝑐𝑟𝑜𝑠𝑠 − 𝑉𝑜ℎ𝑚𝑖𝑐 − 𝑉𝑐𝑜𝑛𝑐 ) (1)

A detailed parametric model of 𝑉𝑐𝑒𝑙𝑙 is derived in Sharaf and Orhan
(2014) and Jouin, Gouriveau, et al. (2016):

𝑉𝑐𝑒𝑙𝑙(𝑖) = 𝑉0 −
𝑅𝑇
2𝑎𝐹

ln
(

𝑖𝑙𝑜𝑠𝑠 + 𝑖
𝑖0

)

− 𝑖𝑅𝑒𝑞 − 𝐵𝑐 ln
(

1 − 𝑖
𝑖𝐿

)

(2)

where 𝑅 is the gas constant, 𝑇 is the operating temperature, 𝐹 is the
Faraday constant, 𝑎 is charge transfer coefficients of the electrodes, 𝑖𝑙𝑜𝑠𝑠
is the stack internal current, which is assumed to be assimilated to
the hydrogen crossover current alone and there is no current caused
by membrane shorting, 𝑖0 is the exchange current at the electrodes,
𝑅𝑒𝑞 is the equivalent ohmic resistance, 𝐵𝑐 is an empirical parameter
considering the water and gas accumulation effects and 𝑖𝐿 is the
limiting current at the cathode (Jouin, Gouriveau, et al., 2016).

3



M. Yue, Z. Li, R. Roche et al. Control Engineering Practice 118 (2022) 104959

Fig. 4. Details of the stack voltage and the corresponding current profile.

Fig. 5. Polarization curves fitted with different 𝛼 values.

3.2. Degradation description

To find an adequate degradation indicator for the PEM fuel cell
operating under dynamic current, it is important to know that which
component degradation will cause which parameter varies in (2). Some
parameters, like 𝑅 and 𝐹 , are constant. 𝑇 is controlled in the experi-
ment so that it is also regarded as constant, so as 𝑉0. Some parameters
are difficult to know whether they vary with time or not, therefore,

they are set to fit the model with the measurements, namely 𝑎 and 𝐵𝑐 .
𝑖𝑙𝑜𝑠𝑠 is not considered as it is assumed to be assimilated to the hydrogen
crossover current. Thus, the variations of the left three parameters, 𝑅𝑒𝑞 ,
𝑖0 and 𝑖𝐿, should be considered as the source of degradation.

𝑅𝑒𝑞 : The resistance increase can be caused by various phenomena. It
includes the electronic and contact resistance increase, as well as
the ionic resistance increase related to the membrane degrada-
tion (Jouin, Gouriveau, et al., 2016). The increase of the elec-
tronic and contact resistance can be observed at the surface layer
of the bipolar plates, the electrode/electrolyte interface, etc, while
the increase of the ionic resistance is dominant by the electrolyte
materials and influenced by the membrane water concentration
and temperature (Husar, Strahl, & Riera, 2012).

𝑖0: The effective exchange current is a function of the electrode
catalyst loading and the catalyst specific surface area (Barbir,
2013). For the fuel cell operated under dynamic load, the cycling
will lead to the major degradation of the electrodes: the catalyst
layer degradation and the carbon support degradation, especially,
the catalyst loss is aggravated by the potential cycles (Khan, et al.,
2021).

𝑖𝐿: The limiting current on the cathode varies due to the changes on
the diffusivity of oxygen, the gas pressure and the thickness of
the gas diffusion layer (Morgan & Datta, 2014). The diffusivity
and the pressure of the oxygen at the cathode are dominated
cause of the concentration loss, which are influenced by the gas
and water accumulation and can be recovered or mitigated by
proper water management. The thickness of the gas diffusion
layer cannot change over some nano-metres, therefore, it can be
ignored (Jouin, Gouriveau, et al., 2016).

Some works have modelled the variation of the three parameters us-
ing physical models or semi-empirical models, however, some of them
are developed with assumptions, which have not been validated (Jouin,
Gouriveau, et al., 2016). Moreover, complex parameters bring diffi-
culties when performing prognostics and some measurements needed
in the model are not economically or technically feasible, therefore,
establishing a degradation indicator that can track the degradation of
the PEM fuel cell is necessary.

3.3. Degradation indicator 𝛼

Fig. 5 plots the polarization curves measured in the 2nd, 4th, 5th,
8th and 9th weeks, which indicates different degrees of fuel cell degra-
dation. The polarization curves were obtained by varying the current
value between 0 and the maximum (10 A). 8 current values, as shown
in Fig. 5, were set increasingly to the test stack through an electronic
load. For each test point, the current value was maintained for 10 min
to get a stable voltage measurement. Then the polarization curves
were formed by interconnecting the 8 test points in current–voltage
coordinate plane.

The model of (2) is identified with different values of 𝑅𝑒𝑞 , 𝑖0 and
𝑖𝐿, whereas the evolutions of the parameters are shown in Fig. 6.
From Fig. 6, it is found that the equivalent resistance 𝑅𝑒𝑞 increases by
approximately 80%, while the exchange current 𝑖0 decreases by a rather
same value. The fitting result of 𝑖𝐿 has remained nearly constant. It is
due to that under the dynamic cycling load, the water accumulation
is well managed and contributes rarely to the concentration loss. This
observation inspires us to assume the same linear evolution of 𝑅𝑒𝑞 and
𝑖0 and assign a constant value to 𝑖𝐿. Therefore, a unique time-varying
variable 𝛼(𝑡) is chosen to describe the deviation of the parameters,
which reflects the state of health of the fuel cell:

𝑅𝑒𝑞 = 𝑅𝑒𝑞,𝑖𝑛𝑖𝑡 ⋅ (1 + 𝛼(𝑡)) (3)

𝑖0 = 𝑖0,𝑖𝑛𝑖𝑡 ⋅ (1 − 𝛼(𝑡)) (4)
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The introduction of variable 𝛼(𝑡) ensures the identification of the
fuel cell degradation level in the dynamic operation of the fuel cell.
Even if the stack is operated under random load and the degradation
cannot be directly identified by the voltage signal, 𝛼(𝑡) can be used as
a degradation indicator to indicate the health state of the fuel cell.

As degradation can only be observed over long periods of at least
several hundred hours, the fuel cell degradation is supposed to be quasi-
constant on a short time scale, i.e., several hours (Bressel et al., 2016;
Jouin, Bressel, et al., 2016). It allows us to segment the operation time
into short periods and fits the model with different 𝛼 values on each seg-
ment. This is realized by wrapping the pre-defined function as a model,
which contains several parameters and an independent variable 𝛼, and
fitting it using the Levenberg–Marquardt algorithm (Moré, 1978). The
pseudo-code is shown in Algorithm 1.
Algorithm 1 Identification of the degradation indicator 𝛼

Load available measurement data of 𝐼 , 𝑉 ⊳ Load data
Initialize the parameters in model (2) ⊳ Initialization
Define:
Interval = 𝑙
Number of steps = 𝑗
Time step 𝑖 = 0
for 𝑖 = 0, ..., 𝑗 do,

Define model (2) with (3) and (4) ⊳ Model definition
Input 𝑋 = 𝐼[0 + 𝑖 ∗ 𝑙 ∶ 𝑙 + 𝑖 ∗ 𝑙] ⊳ Segmentation
Output 𝑌 = 𝑉 [0 + 𝑖 ∗ 𝑙 ∶ 𝑙 + 𝑖 ∗ 𝑙]
Fit the model with 𝛼 and find the best fit ⊳ Model fit

end for
The identification result is shown in Fig. 7 and the details are in

Fig. 8, in which the voltage measurement is segmented with an interval
of 3 h. It can be noticed that the voltage dynamics in load transition
periods are not well established using the identified degradation indi-
cator and the polarization curve model. In fact, the voltage dynamics in
transition states are mainly caused by system dynamics, such as thermal
dynamics, which is not considered in the polarization curve model.
The evolution of the extracted 𝛼 is shown in Fig. 9, in which some
recoveries in the signal are observed. These recoveries are reversible
degradation phenomena due to the characterizations, which are of
different operating conditions that affect the gas and water diffusion
within the cells are affected. However, these reversible phenomena are
part of transient regimes and will disappear once the stack comes back
to a permanent regime. As the implementation of prognostics relies
on the degradation information contained in the signal, the extracted
𝛼 is smoothed using a Savitzky–Golay filter to avoid the influence of
disturbing information.

4. ESN-based prognostics method

A data-driven prognostics method based on neural network mod-
elling is proposed in this section. The idea is to use the available
dataset to build the system behaviour model and to project the current
system state to the future. Data-driven prognostics methods have the
model-free advantage that can be applied regardless of the physical
characteristics of the system. In this section, a typical recurrent neural
network (RNN), i.e., the ESN, is adapted for the prognostics purpose.

4.1. Principle of ESN

The ESN has seen its wide use in time-series prediction applica-
tions (Jaeger, 2001). Different from traditional RNNs, the ESN uses
a ‘‘reservoir pool’’ to build the structure of nonlinear systems, which
achieves high prediction speed and competitive prediction perfor-
mance. The implementation of the ESN is shown in Fig. 10 and
explained in what follows.

The state update model of ESN is written as:

�̃�(𝑡) = 𝑓 (𝐰𝑟𝑒𝑠𝐮(𝑡 − 1) + 𝐰𝑖𝑛𝐱(𝑡)) (5)

𝐮(𝑡) = (1 − 𝑘)𝐮(𝑡 − 1) + 𝑘�̃�(𝑡) (6)

𝐲(𝑡) = 𝑔(𝐰𝑜𝑢𝑡𝐮(𝑡)) (7)

where 𝐱(𝑡) ∈ R𝑁𝑥 and 𝐲(𝑡) ∈ R𝑁𝑦 are the input and output, which, in
this study, are the sequences of the degradation indicator 𝛼, 𝐮(𝑡) ∈ R𝑁𝑢

is the internal state in the reservoir and �̃�(𝑡) ∈ R𝑁𝑢 is its update,
�̃�(𝑡) = 𝐮(𝑡) − 𝐮(𝑡 − 1), 𝐰𝑖𝑛 ∈ R𝑁𝑢×(1+𝑁𝑥) is the input weight matrix,
𝐰𝑟𝑒𝑠 ∈ R𝑁𝑢×𝑁𝑢 is the recurrent weight matrix in the reservoir, and
𝐰𝑜𝑢𝑡 ∈ R𝑁𝑦×(1+𝑁𝑥+𝑁𝑢) is the output weight matrix. 𝑘 is the leaking
rate with a range of (0, 1]. The 𝑡𝑎𝑛ℎ function is generally adopted as
the activation function 𝑓 (∙) of the reservoir, and 𝑔(∙) of the output
layer could be defined with a simple linear function such as 𝑔(∙) = 1.
𝐰𝑖𝑛 and 𝐰𝑟𝑒𝑠 are initialized randomly and they are constant so that
there is no need to train them. Only 𝐰𝑜𝑢𝑡 is going to be trained by
linear regression. When the training dataset is provided, denoted as
𝐗𝑡 = [𝐱(1),… , 𝐱(𝑁𝑡)] and 𝐘𝑡 = [𝐲(1),… , 𝐲(𝑁𝑡)], where 𝑁𝑡 is the number
of sequences in the input and the output, the corresponding reservoir
states, 𝐔𝑡 = [𝐮(1),… ,𝐮(𝑁𝑡)] can be calculated according to (5) and (6).
The output weight matrix is calculated as:

𝐰𝑜𝑢𝑡 = (𝛹𝑇
𝑡 𝛹𝑡 + 𝜆𝐈)−1𝛹𝑇

𝑡 𝐘𝑡 (8)

where 𝐈 is 𝑁𝑢 order unit matrix, 𝜆 is the regulation parameter and

𝛹 = [1;𝐗𝑡;𝐔𝑡] =

⎡

⎢

⎢

⎢

⎣

1 1 … 1

𝐱(1) 𝐱(2) … 𝐱(𝑁𝑡)

𝐮(1) 𝐮(2) … 𝐮(𝑁𝑡)

⎤

⎥

⎥

⎥

⎦

(9)

The general working procedure is as following:

1. Choose the size of the reservoir 𝑁𝑢 and other parameters con-
cerning the level of sparsity of connection, as well as the leakage;

2. Generate the input weights 𝐰𝑖𝑛 by sampling from a random
binomial distribution;

3. Generate the reservoir weights 𝐰𝑟𝑒𝑠 by sampling from a uniform
distribution;

4. Calculate the update of the state in the reservoir as the activation
function 𝑓 (∙) of the input at the current time step multiplied by
the weights plus the previous state multiplied by the reservoir
weights, as written in (5);

5. Create input sequences and connect them to the desired outputs
using linear regression and obtain the trained ESN.

Based on the procedure of training an ESN, an input window and
a prediction window need to be defined, which are used to formulate
the input sequences and the output sequences of the ESN, respectively.
The input window length is the length of the input sequence and
the prediction window length is how many steps are going to be
predicted following the input sequence. The input window length and
the prediction window length are selected according to the volume of
available input data. Supposing the number of available measurements
𝑠 is up to 𝑁 , a window length of 𝑝 is used for the input sequence,
written as:

𝐱(𝑖) = [𝑠(𝑖 + 1), 𝑠(𝑖 + 2),… , 𝑠(𝑖 + 𝑝)], 𝑖 = 0,… , 𝑁 − 𝑝 (10)

For simplicity, it is written 𝐱(𝑖) = [𝑠(𝑖 + 1) ∶ 𝑠(𝑖 + 𝑝)] in the following
text. Then, the corresponding output with a prediction window length
of 𝑞 is written as:

𝐲(𝑖) =[�̂�(𝑖 + 𝑝 + 1), �̂�(𝑖 + 𝑝 + 2), ..., �̂�(𝑖 + 𝑝 + 𝑞)],

𝑖 = 0,… , 𝑁 − 𝑝
(11)

Similarly, it is written with the form of 𝐲(𝑖) = [�̂�(𝑖 + 𝑝 + 1) ∶ �̂�(𝑖 + 𝑝 + 𝑞)]
in the following text.

4.2. Adapt ESN for prognostics purpose

The prognostics process can be summarized as a process of estimat-
ing a system’s remaining useful life and the uncertainties. The inter-
national organization for standardization (ISO) committee has defined
prognostics as (ISO13381-1, 2004):
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Fig. 6. Evolution of degradation parameters 𝑅𝑒𝑞 , 𝑖0 and 𝑖𝐿.

Standard ISO 13381 (2004). The aim of prognostics is the ‘‘estima-
tion of time to failure and risk for one or more existing and future
failure modes’’.

Therefore, to perform prognostics, we need to predict the system
performance until the system failure. Based on the time series forecast-
ing process described in Section 4.1, the last 𝑝-length sequence in the
training phase is used to predict a sequence with the length of 𝑞. Then,
the prognostics starts, in which we cannot predict the subsequent states
because the input sequences run out, the prediction cannot continue. As
we need to continue to predict the time series until the end of life of the
system, new input sequences should be formulated to successively move

the input window. Thus, to retain the degradation tendency and to
manage the prediction uncertainty, the predicted values of the last step
with a sliding window of length 𝑚 are reinjected to the input sequence
of the next step, as shown in Fig. 11. Therefore, the last 𝑚 values of the
input sequence are indeed the predicted values. This process allows the
continuous formulation of the input even without measurements so that
the prognostics can be realized. This process is repeated until reaching
the end-of-life (EOL) threshold, which, in this paper, is supposed to be
the value of 0.423, 97% of the maximum degradation of the tested fuel
cell regarding the length of the experiment.

The pseudo-code of implementing ESN adapted for prognostics
purpose is shown as Algorithm 2, where 𝑁𝑡𝑟𝑎𝑖𝑛 is the number of training

6
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Fig. 7. Reconstructed and measured stack voltages.

steps equal to 𝑁−𝑝 and 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the prediction steps until the system’s
EOL.

Algorithm 2 ESN for prognostics purpose
Load training dataset s ⊳ Load data
Smooth the training data ⊳ Smoothing
Normalize the training data ⊳ Normalization
Define:
Input window length = 𝑝
Prediction window length = 𝑞
Sliding window length = 𝑚
Number of training steps = 𝑁𝑡𝑟𝑎𝑖𝑛
Number of prediction steps = 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡
Time step 𝑖 = 0
while 𝑥𝑖 < 𝑥𝐸𝑂𝐿 do

for 𝑖 = 0, ..., 𝑁𝑡𝑟𝑎𝑖𝑛, do ⊳ Training phase
𝑦𝑡𝑟𝑎𝑖𝑛[𝑖, ∶] = 𝑠[𝑖 + 𝑝 + 1 ∶ 𝑖 + 𝑝 + 𝑞] ⊳ Prepare input and output
𝑥𝑡𝑟𝑎𝑖𝑛[𝑖, ∶] = 𝑠[𝑖 ∶ 𝑖 + 𝑝]

end for
Fit the ESN with prepared input 𝑥𝑡𝑟𝑎𝑖𝑛 and output 𝑦𝑡𝑟𝑎𝑖𝑛
Initialize 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡[0, ∶] by connecting 𝑥[𝑁𝑡𝑟𝑎𝑖𝑛 + 𝑚 ∶ 𝑁𝑡𝑟𝑎𝑖𝑛 + 𝑝] and

𝑦𝑡𝑟𝑎𝑖𝑛[−1, 0 ∶ 𝑚]
for 𝑖 = 0, ..., 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡, do ⊳ Start prognostics

Predict 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡[𝑖] using the fitted ESN and 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡[𝑖, ∶]
Reformulate 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡[𝑖, ∶] by connecting 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡[𝑖− 1, 𝑚 ∶ 𝑝] and

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡[𝑖, 0 ∶ 𝑚] ⊳ Reformulate input
end for

end while

4.3. Implementation of ESN-based prognostics

In order to optimize the configuration of the ESN, the proposed
ESN-based prognostics method consists of three phases: training phase,
evaluation phase and prediction phase. The length of the identified
degradation indicator 𝛼, shown in Fig. 9, is also divided into three parts
for the use of each phase. The ESN is trained in the training phase using
the prepared input and output sequences and then, the following 400 h
are regarded as the evaluation phase. During the evaluation phase, the
measurement is supposed to be unavailable so that the output sequence
is reformulated by the predicted values of the last step. The trained
ESN model is used to output the predictions of 𝛼 and the real values
of 𝛼 is used to evaluate the performance of the prognostics. Here, the
result of prognostics is evaluated by calculating the root mean square

Fig. 8. Details of the reconstructed and the measured stack voltages.

Fig. 9. Evolution of the dynamic degradation indicator 𝛼.

error (RMSE), written as (12). In order to find the optimal settings
of the ESN, an optimization method, i.e., the genetic algorithm (GA),
is applied to generate different parameter combinations and run the
prognostics algorithm repeatedly until find the optimal settings. The
idea is to code the unknown parameters into binary digits, known as
a chromosome, then, calculate the RMSE on the evaluation phase by
selecting, crossover and mutating the chromosomes repeatedly until
finding the optimal solution (Chipperfield, Fleming, & M. Fonseca,
1994). The advantage of GA is its ability to locate the global optimum
or near-global optimum solution without exhausting search of the
solution space. Besides, the processing time only increased as the square
of the project size and not exponentially. Some configured parameters
of the proposed ESN-based prognostics method and the adopted GA are
listed in Table 2, where the length of the sliding window of 𝑚 and the
number of reservoir neurons 𝑁 are optimized by the GA. The influence
of other ESN parameters in prognostics results is not so critical and the
configuration method in Lukoševičius (2012) has been adopted.

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑘=1(𝑥𝑘 − �̂�𝑘)2

𝑛
(12)

Finally, in the prediction phase, no measurement is available while
the ESN has already been optimized and validated by the evaluation
phase, therefore, the data of both the training phase and the evaluation
phase are entered into the trained ESN model and output the prediction
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Fig. 10. ESN structure illustration.

Fig. 11. ESN adapted for prognostics purpose.

Table 2
Configuration of ESN-based prognostics method.
Parameter Value

Input window length 𝑝 50
Prediction window length 𝑞 10
Leaking rate 0.2
Spectral radius 0.6
Regression parameter 0.01
GA population size 100
Number of generations 400
Length of chromosome 10

results. The whole procedure is shown in Fig. 12. The prognostics
results are discussed in the following section.

4.4. Result discussion

For comparison, at first, 𝑚 is fixed at 1. The optimal N is found
between 10 and 400 using an iterating loop. The optimal values of 𝑁 ,
the RMSEs of the prognostics results in both evaluation and prediction
phases and the implementation time with different training data lengths
are recorded in Table 3. The prognostics performance on the evaluation
phase and the prediction phase, as well as the errors are shown in
Fig. 13 for a visual check. The beginning of the training phase has lower
accuracy because of the insufficient training data. After 200 h, the train-
ing error is closed to zero, which demonstrates that the configure ESN is
of good performance. During the evaluation phase, the measurement is
supposed to be unavailable so that the output sequence is reformulated
by the predicted values of the last step, as described in Section 4.2. The
optimal result is plotted in red dashed line. However, when it comes
to the prediction phase, the RMSEs get worse. This is because there is
only one predicted value being considered in the next step, which could
be accidental and cannot transfer enough information. Moreover, the
implementation time of GA is less than 1 min, while the implementation
time of ESN-based prognostics is less than 1 s.

Fig. 12. Procedure of ESN-based prognostics method.

Table 3
ESN-based prognostics results (𝑚=1).

Training data length (hours) 500 600 700 800

𝑚 1 1 1 1
𝑁 90 94 83 81
RMSE of training 0.036 0.019 0.012 0.017
RMSE of evaluation 0.030 0.032 0.056 0.039
RMSE of prediction 0.112 0.140 0.304 0.182
Prognostics implementation time 0.93s 0.94s 0.93s 0.94s

Table 4
GA optimization and ESN-based prognostics results (optimizing 𝑚).

Training data length (hours) 500 600 700 800

Optimized 𝑚 3 5 3 3
Optimized 𝑁 95 80 234 265
RMSE of training 0.017 0.019 0.019 0.005
RMSE of evaluation 0.031 0.039 0.047 0.033
Improvements of evaluation −3.3% 2.5% 16.1% 1.5%
RMSE of prediction 0.051 0.017 0.028 0.020
Improvements of prediction 54.5% 87.9% 90.8% 89.0%
Prognostics implementation time 0.91s 0.90s 1.12s 1.03s

Table 5
Model parameters of particle filter prognos-
tics method.
Parameter Value

Input dimension 1
Output dimension 1
Number of state variables 7
Number of particles 2000

Fig. 14 shows the prognostics results with different training data
lengths, in which both 𝑚 and 𝑁 are optimized. The GA optimization
results of the two parameters and the RMSEs of both the evaluation
phase and the prediction phase, together with the improvements com-
pared with Table 3 are shown in Table 4. By optimizing the number
of values that are reinjected into the input sequence of the next step,
prognostics results in the prediction phase have been improved up to
90.8%.

4.5. Comparison with different methods

The proposed prognostics method is compared with different meth-
ods in the literature. The comparison methods include particle fil-
ter (Jouin et al., 2014) and stacked long short-term memory (LSTM)
(Wang, Cheng, & Hsiao, 2020). The training phase considers the same
generated samples. In the compared particle filter method, a second
order exponential model is used, and the details of model parameters of
particle filter prognostics method is listed in Table 5. The stacked LSTM
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Fig. 13. Implementation of prognostics with different training data lengths (optimizing 𝑁). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 6
Model parameters of stacked LSTM prognostics method.
Parameter Value

Time steps 4
Number of neurons on hidden layer 1 100
Number of neurons on hidden layer 2 100
Number of neurons on dense layer 1
Optimizer adam
Loss mean squared error
Epoch number 50
Batch size 50
Dropout rate 0.01

used for comparison is with two hidden layers and a dense (output)
layer for prediction. The details of the configuration of the stacked
LSTM prognostics method is shown in Table 6.

The performance of the three different prognostics method is com-
pared in Table 7. As it can be seen from Table 7, the proposed
multi-step ESN-based prognostics method has achieved the best predic-
tion accuracy at 600-hour, 700-hour and 800-hour training data length,
while the accuracy is worse than the particle filter method at 500-
hour training data length. This is because when more information is
fed to the model, the model can leverage more trend information, thus
improving the prediction accuracy. Besides, the performance of stacked
LSTM prognostics method is the worst due to the non-optimized config-
urations. When comparing the implementation time, the proposed ESN
runs the fastest, which is more competitive for online applications.

5. Conclusion

A degradation identification and prognostics method for real-time
operating PEM fuel cells was proposed in this paper. The degradation
indicator was derived based on the polarization model and could be
extracted from the stack voltage measurements with random system
dynamics. To perform prognostics, an enhanced multi-step ESN was
adapted for the prediction purpose and the parameters of the ESN were
optimized through an evaluation phase by a genetic algorithm. Com-
pared to non-optimized case, the RMSEs of the predictions were im-
proved up to 90.8% by introducing an optimized sliding window length
when reformulating the input of the ESN in the prognostics phase.
Moreover, the proposed method achieved better accuracy and less
computation time when comparing with other prognostics methods.

The proposed method of degradation identification and prognostics
allows one to estimate and predict the PEM fuel cell health state
under variable and dynamic operating conditions. The degradation
identification can be realized in real time without using supplementary
measurements and the prognostics strategy is model-free. This method
is control-oriented and can facilitate the development of degrada-
tion tolerant control strategies as well as advanced predictive mainte-
nance solutions. The ongoing work is also being conducted to investi-
gate systematically the effect of different factors in dynamic operating
conditions, such as the internal water dynamics.
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Fig. 14. Implementation of prognostics with different training data lengths (optimizing 𝑚 and 𝑁).

Table 7
Comparison of prognostics methods.
Training data
length (hour)

500 600 700 800

RMSE Time RMSE Time RMSE Time RMSE Time

Partile filter (Jouin et al., 2014) 0.042 4.19 s 0.035 4.45 s 0.049 4.73 s 0.047 5.25 s
Stacked LSTM (Wang et al., 2020) 0.079 6.81 s 0.078 7.31 s 0.078 7.11 s 0.051 7.47 s
Proposed ESN 0.051 0.91 s 0.017 0.90 s 0.028 1.12 s 0.020 1.03 s
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� A novel dynamic model of wind-

hydrogen for a multi-level

controller.

� Development of an energy storage

system to produce hydrogen as a

fuel for commercial road vehicles.

� Design of a multi-level MPC to

target hydrogen and electricity

demands via sequential

optimization.

� Degradation issues due to start-

up/down, standby, cold and warm

sequences included in the model.

� Minimization of the overall opera-

tional costs and maximization the

profits.

a r t i c l e i n f o

Article history:

Received 10 December 2021

Received in revised form

13 July 2022

a b s t r a c t

This study proposes a multi-level model predictive control (MPC) for a grid-connected wind

farm paired to a hydrogen-based storage system (HESS) to produce hydrogen as a fuel for

commercial road vehicles while meeting electric and contractual loads at the same time. In

particular, the integrated system (wind farm þ HESS) should comply with the “fuel pro-

duction” use case as per the IEA-HIA report, where the hydrogen production for fuel cell
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electric vehicles (FCEVs) has the highest unconditional priority among all the objectives.

Based on models adopting mixed-integer constraints and dynamics, the problem of

external hydrogen consumer requests, optimal load demand tracking, and electricity

market participation is solved at different timescales to achieve a long-term plan based on

forecasts that then are adjusted at real-time. The developed controller will be deployed

onto the management platform of the HESS which is paired to a wind farm established in

North Norway within the EU funded project HAEOLUS. Numerical analysis shows that the

proposed controller efficiently manages the integrated system and commits the equipment

so as to comply with the requirements of the addressed scenario. The operating costs of

the devices are reduced by 5%, which corresponds to roughly 300 commutations saved per

year for devices.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

Introduction

In recent years, many political institutions, at national and

international level, have been trying to meet the growing en-

ergy demand with increasing production of sustainable and

clean energy in response to global climate change and in view

of the limited nature of fossil fuel resources [1,2]. In particular,

the transport sector consumes a high percentage of energy

that amounts to about 31.8% of the total energy consumed

worldwide per year, as the expert group on future transport

fuels (EG-FTF) shows [3]. Among all the transportation means,

72.3% of the total consumption comes from road transports.

From the point of view of energy vectors, road transportation

Nomenclature

Devices parameters

COM Operating and maintenance cost of the i device

[V/h]

Crep Replacement cost of the i device [V/h]

T Prediction horizon according to control layer [h]

Hmax Maximum hydrogen stored in storage tank [kg]

Hmin Minimum hydrogen stored in storage tank [kg]

M Upper bound of the function P [kW]

m Lower bound of the function P [kW]

NH Cycle life hours of i device [h]

NY Number ofworking hour per year of the i device [h]

PCLD Cold starts power of the i device [kW]

Pmax Maximum power of the i device [kW]

Pmin Minimum power of the i device [kW]

PSTB Stand-by power of the i device [kW]

PWRM Warm starts power of the i device [kW]

R Ramp up limits of the i device [kW/h]

Ts Sample time for high-level control [h]

e Controller minimum tolerance

hi Hydrogen storage charging/discharging efficiency

ps
pch Purchasing energy price [V/kWh]

psc Energy spot price [V/kWh]

ps
sell Selling energy price [V/kWh]

Decision and logical variables

Hs Stored level of hydrogen of the control layer [kg]

Hexc Exchange of hydrogen with external consumers

[kg]

Psavl Available system power of the control layer [kW]

Pse Electrolyzer input power of the control layer [kW]

Psf Fuel cell output power of the control layer [kW]

Psg Grid power of the control layer [kW]

zs;zssell Auxiliary variables for hiding a non-linearity in

the product of decision variables

z�g;z�g
̄

Auxiliary variable for combing the discrete logical

states of the devices with their corresponding

operating powers

db Logical variable according to modes of the i device

sba State transition from a to b of the i device

Notations

∧ Logical operator AND

Rn Space of n-dimensional (column) vectors with real

entries

s the control layer s

a, b Logical states

g; �g Power values corresponding to logical state

r Penalty weighting factor

Acronyms/Abbreviations

BEV Battery electric vehicle

CAPEX Capital expenditure

EMS Energy management system

ESS Energy storage system

FCEV Fuel cell electrical vehicle

HESS Hydrogen-based energy storage system

HIA Hydrogen implementing agreement

HLC High-level control

IEA International energy agency

LLC Low-level control

MILP Mixed-integer linear programming

MLD Mixed logic dynamic

MPC Model predicative control

RES Renewable energy source
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significantly (86.3%) depends on oil products (fuel oil, gasoline,

diesel, natural gas, liquefied petrol gas, biofuels), and diesel is

the most used. For these reasons, scientific research has ori-

ented to the development of alternative solutions to fossil

fuels also in this sector.

Currently, zero-emission vehicles are considered as a

promising option for the evolution of standard vehicles to-

wards sustainability [4,5]. Examples of zero-emission vehicles

are battery electric vehicles (BEVs) and fuel cell electric vehi-

cles (FCEVs). In particular, fast refueling time, higher energy

density andmodularity characterize the fuel cell systems and,

consequently, FCEVs seem more attractive than BEVs. In

contrast, the lower reliability and durability of FCEVs

compared to conventional vehicles, higher manufacturing

costs and lack of hydrogen refueling infrastructure limit their

commercialization [6]. Regarding this last point, many stra-

tegies can be implemented. Among them, those that can come

by leveraging solutions to problems in other domains such as,

e.g., energy systems and their green transition, are very

appealing because they can imply low costs. For instance,

within the main topics of the green transition of energy sys-

tems, the integration of renewable energy sources, particu-

larly wind, is an important case. Indeed, the International

Energy Agency-Hydrogen Implementing Agreement (IEA-HIA)

published a report where three different use cases regarding

the possible operations for a wind farm equipped with a

hydrogen-based storage system (HESS) are identified [7]. The

main features that any possible control strategy can lend to

the integrated system (wind farm þ HESS) are presented and

discussed for each use case. Among them, the fuel production

use case requires that the integrated system be operated to its

full range to produce hydrogen for other purposes than re-

electrification, such as the provision to FCEVs. Undoubtedly,

this operating mode can positively impact the spread of

hydrogen technologies formobility, among others. In addition

to the main goal, the IEA-HIA Task 24 final report highlights

that additional functionalities should be considered for an

integrated system since operating it only toward hydrogen

production “[…] plays no role in the management of wind power, as

it does not respond to the variable output of either local or distant

wind turbines”.

This study regards the development of an MPC strategy to

suitably operate HESSs paired to wind farms such as in the

framework of the above mentioned IEA-HIA. In particular,

the hydrogen is produced to meet the demand for commer-

cial road FCEVs as the main objective and must simulta-

neously meet electrical and contractual loads with tunable

priorities. The degradations due to the working cycles of the

HESS components where these have a major impact, i.e., the

electrolyzer and the fuel cell, are also taken into account

through an appropriate modeling using the mixed logic dy-

namic (MLD) framework [8], which enables to consider the

devices' logical states and corresponding switchings in the

implemented MPC scheme. The electrolyzers and fuel cells

are usually expensive, and their untimely wearing can

hinder the widespread adoption of HESSs and the penetra-

tion of the integrated systems into the grid as an immediate

consequence.

This paper extends the studies presented in Refs. [9,10] by

developing and solving a different scenario by means of a

multi-level MPC that takes into account external hydrogen

consumer requests, optimal load demand tracking, and elec-

trical market participation. The multi-level architecture is

kept across all the previous works because the different con-

trol algorithms that are correspondingly developed will be

integrated into a unique and consistent software module in

the final release of the control platform that will be in charge

of operating the system targeted by the HAEOLUS project. The

wind-HESS is described using MLD to take fully into account

device switching dynamics and state formulation. Moreover,

the cold and warm starts of the devices have also been

included in the system models to achieve feasible real-time

optimal operations. Considering such logic states into the

control strategy allows for setting control references that

result in the reduction of premature unit failures, and also for

improving the real-time operations toward the maximization

of the revenues by the interaction with external hydrogen

consumers and with the utility grid.

In order to achieve the objectives, this paper presents a

new energy management strategy such that the integrated

system pursues two main objectives:

1. To meet hydrogen demand for road vehicles;

2. To sell energy to the grid through electrical market

participation and to supply a local load, after any excess of

renewable generation has met the hydrogen demand.

To this aim, two timescales across which the relevant dy-

namics take place are considered. A larger timescale ad-

dresses the control objectives on a daily basis, i.e., the

controller has to allocate the optimal amount of hydrogen to

be sold to FCEVs based on the day-after expected aggregate

demand. Then, based on such allocation, all the extra

hydrogen achieved via the wind-power conversion can either

be sold to the market to maximize the profit or used to supply

a local load. A smaller timescale addresses the deviations due

to the inherent unreliability of the forecasts used for the larger

timescale and only addresses the market participation and

the local load supply.

This research study has important novelties compared to

the control strategies that are covered in the literature

reviewed in Section Literature review. For instance, the sys-

tem which controls the real-time energy management of

renewable energy systems has been studied, which must

react to external disturbances within a short time interval of

the order of seconds or minutes. The systems reviewed in the

literature cannot exploit the economic benefits of hydrogen

demand satisfaction for road vehicles that are made in long-

term planning of the energy storage system (ESS). However,

long-term planning cannot be applied for real-time power

applications, e.g., microgrids, as a great deal of computational

effort is required which implies a slowdown in responses.

In summary, the main contributions of the paper are:

1. The development of anMPC scheme for integrated systems

targeting the fuel production use case as per the IEA-HIA

Task 24 final report;

2. The implementation of amulti-level andmulti-stage control

architecture such that different and competing control ob-

jectives are addressed at the relevant time-scales alongwith
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corresponding priority levels. In particular, unconditional

and conditional priority levels are consistently handled;

3. The comprehensive addressing of physical, economical

and practical aspects, such as, e.g., the equipment oper-

ating and switching costs, their operating constraints, the

impact of cold and warm starts in terms of costs during

operations and time delays they introduce on the devices

switchings, etc.

The paper is organized as follows: the literature review is

reported in Section Literature review; the material and

methods are shown in Section Material and methods; in Sec-

tion Results analysis and discussion simulation results show

the validity of the proposed control approach; Section

Conclusions concludes the paper.

Literature review

Green hydrogen as a fuel for commercial vehicles has attrac-

ted the attention of the transportation industry always look-

ing for alternatives to fossil fuels. Moreover, its re-

electrification through fuel cells has also been considered as

a back-up source to meet the local and contractual loads

[11,12]. Particularly, hydrogen production as a fuel for the

transport industry gives environmentally friendly advantages

over conventional fuels [13]. The authors in Ref. [14] have

proposed a modified Weibull distribution function and a log

law to model and determine optimal windy sites and turbine

configurations to produce wind electricity for hydrogen pro-

duction. In addition, a policy for hydrogen powered com-

mercial vehicles has been provided with the aim of quick

integration into the transportation industry.

The vehicular applications of fuel cells for hydrogen

operated vehicles are getting the attention of the trans-

portation industry these days [15]. The microgrid economic

dispatch problem, while interacting with external agents,

such as FCEVs and BEVs, has been studied in Ref. [16]. There, a

microgrid finds the optimal usage of its internal resources by

acting in the day-ahead energy market through the forecasts

of the generations and the energy price predictions. Depend-

ing on the economic schedule, the microgrid controller sat-

isfies the hydrogen and energy demands of the FCEVs and,

based on a specific energy market requested by an external

agent, supplies the closest energy profile. An MPC-based

controller, which includes microgrid feasibility, mainte-

nance, operational and degradation costs, has been developed

to dispatchmicrogridwith external consumers. In Ref. [17] the

authors have presented and compared four different types of

buses (hydrogen-based, electric-hybrid, conventional and

electric-battery). They have concluded that the FCEVs among

other buses technologies are the most promising and

competitive option especially due to their high energy density.

Further, the use of FCEVs in the context of European local

public transport has been studied in Ref. [18]. On the other

hand, the NewBusfuel project confirms the feasibility of using

hydrogen as a fuel for public passenger transports under

many situations and in twelve different locations [19].

Many authors have studied hydrogen production in the

energy market participation for revenue maximization.

Among them, a novel supervisory MPC technique for HESSs of

the power market management has been studied in Ref. [20].

Further, in Refs. [21,22] theMPC framework has been extended

using hybrid-ESSs, applied for solar-powered microgrids and

validated with respect to the control goals of improving

microgrid operational costs and durability. In Ref. [23] a hier-

archical MPC has been designed to satisfy the requested load

by pairing the renewable energy sources (RESs) with the ESSs.

A mixed-integer quadratic programming algorithm based on

MPC in Ref. [24] has been designed to ensure the balancing

between the power generated by the wind farm and the

electrolyzer power consumption in an offshore plant. The

wind-hydrogen plant mathematical modeling via mixed-

integer linear programming (MILP), including the ESS opera-

tional costs, has been studied in Refs. [25e27]. An MILP

approach has also been proposed in Ref. [28] to minimize the

fuel cell and the battery lifespan degradations, and operation

and maintenance costs in marine transportation. The results

have demonstrated a reduction in the fuel cell degradations.

In Ref. [29] the MPC technique has been used for load sharing

in a microgrid equipped with HESS and ultra capacitor. How-

ever, important aspects such as the working cycles and the

degradation issues of the devices are not included. The same

applies to cold and warm starts.

With the provision of the local load satisfaction, an MPC-

based algorithm has been implemented in Ref. [30] on an

off-grid system. The MPC is characterized by the constraints

to limit the charge within the operating ranges of the ESSs

and, on the other hand, its objective consists in supplying the

required electric load. An off-grid EMS has been proposed in

Ref. [31] to control the power flow to and from the storages so

as to track the user's requested electrical demand. Another

fuel cell and ultracapacitor paired hybrid-ESS has been pre-

sented in Ref. [32] where an MPC scheme is used to track the

user requested load. Moreover, an EMS based on MPC for a

microgrid, which includes HESS, ESS and renewable energy

resources, has been studied in Ref. [21]. The MPC strategy

enables the electrical load satisfaction in hybrid-ESSs, i.e.,

systems which include hydrogen and battery for the long-

term and short-term, respectively.

In several studies, the degradation issues are included in

the cost functions of HESSs, as instance [33,34]. More spe-

cifically, these studies show how some aspects (for instance,

the power fluctuations or device switching cycles) determine

the devices' degradation in the wind-HESS. On the other

hand, the models proposed sophisticated fast dynamic fea-

tures, such as the standby, warm and cold start. Moreover,

the study in Ref. [35] has modeled all the degradation issues,

except the switching cycles. In Ref. [36], the authors have

studied the durability of the proton exchange membrane

technology subjected to the operating conditions which

cause a lifetime reduction of the electrolyzer and the fuel

cell. Consequently, the development of an EMS that both

ensures the smooth operation of the devices and achieves

other objectives such as high energy efficiency, resiliency,

reliability and balance in demand and supply is a demanding

challenge. The literature also includes some studies related

to the improvement of the durability of the FCEVs. In

particular, in Refs. [37,38] a parametric study based on

convex optimization has been carried out for the analysis of
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the transient power demand on the fuel cell stack. These

studies have shown that the fluctuations due to a lack of

constraints on the transient power variation affect the

resulting power demand on the fuel cell.

As regards energy cost aspects, in Ref. [39] the objective

functions take into account both the aging, maintenance and

replacement of the devices, and the interaction with the

electricity grid for the sale/purchase of energy. Therefore, the

MPC controller satisfies both the load demand andmaximizes

the lifespan of the devices. However, the costs related to the

working states switching and the devices' capital are not

considered.

Other research studies can be found in the literature where

the MPC is developed together with other advanced ap-

proaches to achieve optimal ESSs operations. For instance, a

scheduling MPC framework has been implemented in Ref. [40]

to regulate the state of charge of ESSs subject to stochastic

wind and grid demand generations. In order to obtain the net

grid power injected into the main grid, the optimization

problem is based on a look-ahead policy in the ESS equipped

wind farm; the authors in Ref. [41] have described a novel

storage device with an embedded health monitoring algo-

rithm based on predictive control with the aim of extending

hydrogen devices life spans by minimizing the associated

degradation. They have formulated a multi-objective optimi-

zation problem, where weighting factors are designed to

minimize selected criteria. The results, when compared with

the traditional EMSs designed for the FCEVs, have shown the

savings on the economic costs for some speed profile, regu-

lating the storage devices in safe range and significantly

reducing the energy sources degradation. Furthermore, the

MLD framework applied to the MPC controller has been

developed for the RESs-based hybrid co-generation power

system in Ref. [42] and for distributed energy resources with a

battery-based ESS in Ref. [43]. In Refs. [39,44] an MPC strategy

for battery based microgrid optimization has been integrated,

as proposed in Refs. [26,27,45] where the MILP has been used

for capturing the correct behavior of the ESS paired with the

renewable energy plant.

Hydrogen-based EMSs for FCEVs, in particular within the

scope of heuristics and rule-based strategies, have also been

studied in the literature. For instance, the authors in Ref. [46]

have investigated an integrated energy systemwhich includes

hydrogen, wind power and photovoltaic systems. They have

proposed a multi-objective optimization model to minimize

both operating and environmental costs for day-ahead power

dispatching. It is shown that carbon emissions are reduced by

3.5% with 2.8% increase of operating costs and operating cost

carbon is reduced by 5.12% with 2.6% increase of environ-

mental costs.

The literature also includes a number of other researches

within the scope of fuzzy logic EMSs, see for example [47,48].

Their main advantage lies in the simple implementation even

in real-time control applications. Moreover, the literature in-

cludes studies where authors have adopted adaptive fuzzy

logic [49] or wavelet-fuzzy logic [50]. In this regard, a fuzzy

logic based control strategy has been developed in Ref. [51] for

extended-range FCEVs. The simulation results have shown

that the hydrogen consumption by the FCEVs is lower than the

oneoff and the control power strategies, respectively.

Besides the optimal control schemes, heuristics and meta-

heuristics approaches can also be found in the literature. The

most adopted heuristic algorithms in the literature include

genetic algorithm, simulated annealing, particle swarm opti-

mization, ant colony optimization and duelist algorithm. For

instance, the authors in Ref. [52] have presented an advanced

EMS that aims at reducing the microgrid running costs via

energy storage integration. In particular, they have imple-

mented a battery-based EMSwhich is used as a backup source

for providing power supplies to the load according to energy

market profiles. The authors in Ref. [53] have presented a data

driven hierarchical multi-objective optimization approach for

optimal sizing of the renewable powered (wind and PVs)

islanded hydrogen energy system.

The literature also deals with the economic side of the

renewable energy production and its applications. Many

countries around the globe are investing in the renewable solar

to achieve the goals of the Paris Agreement. In this regard, the

authors in Ref. [54] have investigated Saudi Arabia's potential

for the solar industry, whose projection by 2032 is expected to

be 41 GW. In this study, hourly base simulations, which have

compared six different renewable power generation systems in

several areas, have shown that the hybrid renewable energy

system which integrates solar and wind resources through PV

array and wind turbines with the battery storage system leads

to the lowest cost of energy in Saudi Arabia. In Ref. [55] a

techno-economic analysis of a hydrogen refueling station

powered by a wind-PV hybrid power system tomeet fuelling 25

vehicles per day inTurkey has been carried out. Coppitters et al.

in Ref. [56] have presented a computationally efficient robust

control strategy for the optimization of a hydrogen-based

microgrid under different scenarios. The paper provides a

robust optimization design by taking into account the techno-

economic uncertainties of the hydrogen-based plants.

Contrarily to the above commented papers, this work does

not adopt heuristic methods while it solves mixed-integer

optimal problems by means of numerical commercial

solvers. Through numerical analysis, it is shown that the

derived control problem is solvable within the considered

sampling intervals.

In conclusion, equipment costs and degradations aspects

are not simultaneously studied in the literature examined

above. To this extent, this is one of the novel aspects of this

research work. Note instead that the local control of wind

turbines is out of the scope of this paper.

Material and methods

Fundamental notions and methodology are given to provide

the control strategy of the integrated system under

investigation.

The MPC algorithm

TheMPCwas initially introduced for “slow” dynamic systems,

such as those found in the process industry, with the idea that

a control problem can be formulated as an optimization

problem solved on a finite time horizon at each time-step.

Then, at the next step, new measurements from the plant
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are taken, the horizon is shifted ahead of one sample, and a

new iteration occurs. In particular, let us consider the

discrete-time dynamical system

xkþ1 ¼ fðxk;ukÞ; (1)

with state xk; xkþ12X3Rn, input uk2U3Rm and initial condi-

tions x0. Let us also assume the cost function J(xk, uk) is

available and models control objectives and possible re-

quirements that have to be pursued. Other requirements are

already taken into account through the state, input and

disturbance definition sets that will be included as constraints

in the optimization problem. Then, at each time instant k, the

optimal input sequence uT
k
* ¼ ½u*

k;…;u*
kþT�u over the horizon of

duration T is computed by

uT
k

* ¼ arg min
uT
k

XT
j¼0

J
�
xkþj;ukþj

�
s:t:

xkþjþ1 ¼ f
�
xkþj;ukþj

�
;

xkþj2X ;

ukþj2U;

(2)

where j ¼ 1, …, T. After computing uT
k
*
, only u*

k is input to the

plant, while all the other components are discarded. Then, the

time is shifted to the next time-step kþ 1 and the procedure is

repeated, such that a feedback policy is implemented. In

general, optimization techniques provided by standard

solvers are used to solve the problem (2).

The MPC technique can be applied for different variables

(e.g., integer or logical decisions, hybrid/discontinuous dy-

namics) and operating constraints (e.g., time delays, working

ranges, physical limits). Moreover, in order to use the MPC

approach, a good formulation of the system is required. This

task may not be trivial, especially for complex systems. The

application of the multi-level MPC for solving the problem

under consideration is one of the main contributions of this

paper.

The MLD formulation introduced in Ref. [8] is used in this

paper. Indeed,mixed logic inequalities are useful formodeling

the integrated system under investigation which is identified

by continuous dynamics (such as hydrogen-based storage

units), economic scenarios (such as different electricity tariffs)

and switching operating conditions (such as charge/discharge

of HESS). Using the transformations in Ref. [8], this hybrid

model can be easily expressed by using linear inequalities on

which branch and bound techniques can be directly applied.

The corresponding sets of inequalities for the structures of

interest for this paper are reported in Table 1.

Preliminaries and notation

Boolean or logical variables take only two values: false

(denoted by 0) and true (denoted by 1). Scalars are indicated

with lowercase, non-bold letters; column vectors are denoted

by lowercase, bold letters; matrices are denoted by uppercase,

non-bold letters; N ¼ 3 in case of the three states model and

N ¼ 5 in case of the five states model. The subscript i identifies

a particular device, i.e., i¼ e identifies the electrolyzer, and i¼ f

identifies the fuel cell; the superscript s identifies a particular

level, i.e., s ¼ HLC identifies the high-level automata, and

s ¼ LLC identifies the low-level automata. Then, the sets

I ¼ fe; fg and S ¼ fHLC;LLCg are introduced. The formulation

of the LLCmodel is achieved using the setsALLC;BLLC;CLLC;DLLC,

while the HLC model is formulated with the help of the sets

AHLC; BHLC; CHLC; DHLC. In particular, for the LLC the sets are

defined as ALLC ¼ fOFF; STB; ON; CLD; WRMg,
BLLC ¼ f0; PSTB;Pmin; PCLD ; PWRMg and CLLC ¼ f0; PSTB ; Pmax;

PCLD; PWRMg, and the set of ordered pairs DLLC ¼ fð0; 0Þ; ðPmin;

PmaxÞ; ðPSTB; PSTBÞ; ðPCLD; PCLDÞ; ðPWRM ; PWRMÞg. In a similar

fashion, for the HLC it is AHLC ¼ {OFF, STB, ON}, BHLC ¼ f0;PSTB;
Pming;CHLC ¼ f0;PSTB;Pmaxg, and the set of ordered pairs DHLC ¼
fð0; 0Þ; ðPSTB; PSTBÞ; ðPmin; PmaxÞg. For the convenience of the

reader, these sets are reported in Table 2.

For the sake of completeness, the n-dimensional vector

space over the real numbers is Rn, the Kronecker product is

denoted by 5, 1n ¼ [1, …,1]u and 0n ¼ [0, …,0]u are column

vectors of n unit and zero entries, respectively; 0n,n and In
denote a n � n zeros and identity matrices, respectively;

diag(m1,…, mn) denotes the diagonal n� nmatrix with diagonal

entries m1,…, mn; e1 ¼ [1,0,…,0]u,…, en ¼ [0,0,…,1]u denote the

canonical basis of Rn. Furthermore, let kyk2M ¼ yuMy. If M ¼ In,

then the Euclidean norm is obtained kyk2.
In this paper, the formulations are proposed in discrete

time k. In particular, mapping to continuous time t can be

obtained by assuming t ¼ kTs, where Ts is the sample time

which is equal to 1 h or 10 min according to the considered

control layer.

System dynamic modeling

The HESS models are provided in this subsection. Specifically,

discrete time state vector dynamics and physical and oper-

ating constraints are described.

Integrated system description
The main entities of the scenario under investigation are the

wind farm, the HESS (hydrogen tank, electrolyzer and fuel

cell), the hydrogen loads, and the local and the contractual

loads, as Fig. 1 depicts. The solid green lines, the blue lines,

and the red dashed lines refer to the energy flows, the

hydrogen flows and data flows, respectively. The power by the

wind generator is indicated with Pw, the input power to the

electrolyzer is indicated with PINe , the output power from the

fuel cell is denoted by POUT
f , Href is the hydrogen reference

demand, Pg is the power injected into the grid, and Pref is the

local load demand which needs to be met by Pavl.

Fig. 2 reports the models developed for the implementa-

tion of the hierarchical MPC. One automaton modeling the

electrolyzer and one automaton modeling the fuel cell are

required for each control level. Since the HLC addresses

larger timescales of the order of hours, the device cold and

warm starts in time intervals of the order of minutes are

neglected. Therefore, each corresponding automaton is an

instantiation of that including only the red nodes and edges.

Regarding the LLC, which is in charge of the real-time oper-

ations and therefore addresses shorter timescales of the

order of minutes, the devices' cold and warm starts are of

concern and cannot be neglected. Therefore, each
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corresponding automaton is instantiated including the red

and blue nodes and edges. In all the following, the subscript

refers to the device type that is dropped both for decision

variables and for parameters to ease the notation.

The automata depicted in Fig. 2 are augmented with logical

variables in order to highlight the link with theMLDmodeling.

In particular, the logical variable da(k) is attached to state a

such that whenever the automata is in state a at instant k,

correspondingly da(k) ¼ 1, while da(k) ¼ 0 otherwise. Similarly,

the logical variable sbaðkÞ is linked to the edge connecting state

a to b, such that when the automata shifts from a to b at time-

step k sbaðkÞ ¼ 1, and sbaðkÞ ¼ 0 otherwise. It is important to

highlight that at HLC, all the six possible transitions are

enabled, while at LLC, this does not hold due to the electro-

lyzer and fuel cell features. Corresponding constraints will be

considered in the MPC controller to prevent such transitions

and enable feasible and realistic operations.

MLD state constraints
The MLD state constraints of both devices can be derived by

taking into account their physical operations and the relevant

powers in each operating mode. To start with, let us analyze a

device in its ON state. In this case, the relevant power is the

input power Pin which is bounded within [Pmin, Pmax], and by

Table 1 e MLD equivalences. M is a “large” (w.r.t. to the order of magnitude of other quantities in the
problem) positive number, m is a “small” negative number (e.g., m ¼ ¡M) and ε is a “small” positive
number which is typically the machine precision.

Relation Logic MLD inequalities

AND (∧) s3 ¼ s1 ∧ s2 d3 � d1

d3 � d2

d3 � d1 þ d2 � 1

IFF (⇔) s1 ⇔ s2 d1 ¼ d2

[s ¼ true] ⇔ [f � 0] f � M(1 � d)

f �ε þ (m � ε)d

IF-THEN-ELSE
r2 ¼

�
r1 if s ¼ true
0 if s ¼ false

r2� Md

r2� md

r2� r1 �Mð1� dÞ
r2� r1 þmð1� dÞ

Table 2 e Sets used in the paper.

Set

I ¼ fe; fg; i2I
S ¼ fHLC;LLCg; s2S
ALLC ¼ fOFF;CLD;STB;WRM;ONg
AHLC ¼ fOFF;STB;ONg
BLLC ¼ f0;PCLD;PSTB;PWRM;Pming
BHLC ¼ f0;PSTB;Pming
CLLC ¼ f0;PCLD;PSTB;PWRM;Pmaxg
CHLC ¼ f0;PSTB;Pmaxg
DLLC ¼ ��

0; 0Þ; ðPCLD; PCLDÞ; ðPSTB; PSTBÞ,
ðPWRM;PWRMÞ; ðPmin;PmaxÞg
DHLC ¼ fð0;0Þ; ðPSTB;PSTBÞ; ðPmin;PmaxÞg

Fig. 1 e Scenario under investigation.
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setting Pin ¼ Ps(k)dON(k), it results Ps(k) ¼ Pin 2 [Pmin, Pmax]

whenever dON(k) ¼ 1, where s ¼ HLC or LLC. Similarly, in STB

state, the relevant power is PSTB, and by setting PSTB ¼ Ps(k)

dSTB(k) it results PSTB ¼ Ps(k) whenever dSTB(k) ¼ 1. As for the

WRM and CLD states, similar considerations can be deduced.

Moreover, since in the OFF state hydrogen production and

power consumption do not occur, then Ps(k) ¼ 0. Formally,

PsðkÞ ¼ 0 ⇔ dOFFðkÞ ¼ 1; (3a)

PsðkÞ ¼ PSTB ⇔ dSTBðkÞ ¼ 1; (3b)

PsðkÞ2½Pmin; Pmax� ⇔ dONðkÞ ¼ 1; (3c)

PsðkÞ ¼ PCLD ⇔ dCLDðkÞ ¼ 1; (3d)

PsðkÞ ¼ PWRM ⇔ dWRMðkÞ ¼ 1; (3e)

where (3a)e(3c) pertain to the high-level automata (s ¼ HLC)

and (3a)e(3e) pertain to the low-level automata (s ¼ LLC). The

logical expressions in (3) are not directly handled by numerical

solvers; instead, they require further manipulations to derive

equivalent mixed-integer inequalities. As an illustrative

example, consider the ON mode. In order to define the con-

dition Ps(k) 2 [Pmin, Pmax], two Boolean variables z�Pmin ðkÞ and
z�Pmax ðkÞ need to be defined, as

z�Pmin ðkÞ ¼
(
1 PsðkÞ � Pmin;

0 PsðkÞ<Pmin;
(4a)

z�Pmax ðkÞ ¼
(
0 PsðkÞ>Pmax;

1 PsðkÞ � Pmax;
(4b)

which, according to the MLD equivalences reported in Table 1,

are equivalent to

PsðkÞ � Pmin � ðMþ eÞ z�Pmin ðkÞ � e;

�PsðkÞ þ Pmin � M
�
1� z�Pmin ðkÞ

�
;

(5a)

�PsðkÞ þ Pmax � ðMþ εÞ z�Pmax ðkÞ � ε;
PsðkÞ � Pmax � M

�
1� z�Pmax ðkÞ�; (5b)

whereM > 0 is an upper bound andm¼�M is a lower bound of

Ps(k). Then, (3c) is rewritten as

�
1� dONðkÞ�þ z�Pmin ðkÞ � 1; (6a)

�
1� dONðkÞ�þ z�Pmax ðkÞ � 1: (6b)

Similar considerations have to be applied to the remaining

equations in (3).

Let us now introduce the matrices

VLLCðkÞ ¼

2
66664

dOFF z�0 z�0

dSTB z�PSTB z�PSTB

dON z�Pmin
z�Pmax

dCLD z�PCLD z�PCLD

dWRM z�PWRM
z�PWRM

3
77775; GLLC ¼

2
66664

0 0
PSTB PSTB

Pmin Pmax

PCLD PCLD

PWRM PWRM

3
77775; (7)

for the five states automata, and

VHLCðkÞ ¼

2
664
dOFF z�0 z�0

dSTB z�PSTB z�PSTB

dON z�Pmin
z�Pmax

3
775; GHLC ¼

2
664

0 0

PSTB PSTB

Pmin Pmax

3
775 ;

(8)

for the three state automata, where VHLC ¼ WVLLC,

GHLC ¼WGLLC with W ¼ [I3 03,2] being a suitable matrix whose

extended definition is provided in Appendix A. In what fol-

lows, we derive the MLD equations in matrix form. To this

aim, we will use the products Vs(k)e[ with [2 {1, 2, 3} and Gse[
with [ 2 {1, 2} with the column el of appropriate dimension.

With this notation, e.g., Vs(k)e2 and Vs(k)e3 are the slack

Fig. 2 e Automata for higher-level and lower-level controls. Each node represents a particular state, while the edges

represent the state transition. The red nodes and edges are used for the HLC, while the red nodes and edges with the

additional blue ones are used for the LLC. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)
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vectors required to determine the logical state vector Vse1
with respect to the corresponding relevant powers Gse1 and

Gse2. Specifically, the compact form of the inequalities in (3)

is given by

½VsðkÞe1 ¼ 1N� ⇔ ½PsðkÞ1N � Gse1;P
sðkÞ1N � Gse2�; (9)

with N ¼ 3 for s ¼ HLC and N ¼ 5 for s ¼ LLC. Similarly, the set

of inequalities in (5) and (6) for the ON state and the similar

inequalities for the other states can be defined in matrix form

as

�ðMþ εÞVsðkÞe2 � �PsðkÞ1N þ Gse1 � ε1N;
MVsðkÞe2 � PsðkÞ1N � Gse1 þM1N;

(10a)

�ðMþ εÞVsðkÞe3 � PsðkÞ1N � Gse2 � ε1N;
MVsðkÞe3 � �PsðkÞ1N þ Gse2 þM1N;

(10b)

and

ð1N � VsðkÞe1Þ þ VsðkÞe2 � 1N; (11a)

ð1N � VsðkÞe1Þ þ VsðkÞe3 � 1N; (11b)

respectively. In addition, the mutually exclusive conditions

1u
N VsðkÞe1 ¼ 1 (12)

has to be also considered due to the fact that each devicemay

stay in only one state at each time-step k. The operations of

the devices are independent of each other such that the

controller can enable non mutually exclusive operations,

e.g., with the electrolyzer and the fuel cell being on at the

same time. The controller can use this extra degree of

freedom to minimize the switching costs that are taken into

account by the corresponding cost functions. Thus, it could

happen that, e.g., if the electrolyzer is on and the fuel cell is

required to switch on from standby, the controller is free to

decide not to switch the electrolyzer off or standby, precisely

because this would imply too many switchings for the elec-

trolyzer increasing, therefore, the related costs.

MLD constraints of the state transitions
For each automaton shown in Fig. 2, N � (N � 1) possible state

transitions are implied, where N is the number of modes. So,

the HLC model has 6 possible mode transitions (N ¼ 3), while

the LLC model implies 20 possible mode transitions (N ¼ 5).

However, not all transitions can be enabled for N ¼ 5. Indeed,

some of them cannot take place on real devices due to their

inherent functioning (and they do not appear in Fig. 2).

The transition connecting state a to b can be defined in

terms of ds, so that when the automata shifts from state a to

state b at the time-step k, then sbaðkÞ ¼ 1, while sbaðkÞ ¼ 0

otherwise. Thus,

sb
aðkÞ ¼ daðk�1Þ∧dbðkÞ; (13)

with a, b2As, a s b, and s 2 {HLC, LLC}. The definition in (13)

can be converted into three inequalities and provided as

constraints in the proposed MPC controller, according to MLD

equivalences in Table 1. Notice that, although sb
aðkÞ plays the

role of a logic variable, it is defined in the continuous interval

[0, 1], rather than in the set {0, 1}. This relaxation, useful for

computational efficiency, is possible since, due to the above

formula and Table 1, sb
aðkÞ will indeed only assume values at

the boundary of the interval [0, 1]. As an illustrative example,

the OFFeON state transition is equivalently converted into the

following inequalities

�dOFFðk� 1Þ þ sON
OFFðkÞ � 0;

�dONðkÞ þ sON
OFFðkÞ � 0;

dOFFðk� 1Þ þ dONðkÞ � sON
OFFðkÞ � 1:

(14)

Similarly, the inequalities for the HLC/LLC and corre-

sponding other states can be derived. In order to provide a

compact form of the inequality constraints for the state

transitions, the vectors

sLLCðkÞ ¼ �
sSTB
OFF sON

OFF sCLD
OFF sWRM

OFF

sOFF
STB sON

STB sCLD
STB sWRM

STB

sOFF
ON sSTB

ON sCLD
ON sWRM

ON

sOFF
CLD sSTB

CLD sON
CLD sWRM

CLD

sOFF
WRM sSTB

WRM sON
WRM sCLD

WRM

	u
(15)

for five state automata and

sHLCðkÞ ¼ �
sSTB
OFF sON

OFF sON
STB sOFF

STB sOFF
ON sSTB

ON

	u
(16)

for the three state automata are introduced. Then, the set of

inequalities in (14) for the OFF-ON state transition and the

similar inequalities for the other transitions can be defined in

matrix form as

LssðkÞ � Vsðk� 1Þe151N�1;
LssðkÞ � LsVsðkÞe1;
LssðkÞ � Vsðk� 1Þe151N�1 þLsVsðkÞe1 � 1NðN�1Þ;

(17)

withN¼ 3 for s¼HLC andN¼ 5 for s¼ LLC, and thematrices L

and Ls are provided in Appendix A. The matrix L selects the

admissible transitions out of all the theoretically possible

from the automata in Fig. 2 and the matrix Ls is the circular

shift matrix obtained by considering all possible state transi-

tions. Along with (17) also the constraint

�LssðkÞ ¼ 0; (18)

has to be considered, where the matrix L
̄
(see Appendix A)

selects all the not admissible transitions out of all the theo-

retically possible from the automata in Fig. 2, which have to be

forced to zero in the proposed MPC controller. It is worth

pointing out that since all six possible transitions are allowed

in three states model, the devices cost function for the HLC

includes all of them. Thus, (18) does not apply to the three

states model. The complete list of the state transitions for

both control levels is reported in Refs. [10,57].

Temporal constraints
Both devices have inherent restrictions for the switching time

between the feasible states, which is reflected in the five state

automaton, which includes the additional CLD and WRM

states. Such states are transient since the device does not

settle indefinitely in either one or the other. Instead, they are

active only for a short interval and are relevant for shorter

timescales only. For the five state automaton, it is only

necessary to include the following timing constraints [9]:
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½1TC 5 euCLD�½VLLCðkÞe1 �VLLCðk�1Þe1� � ½ITC 5 euCLD�vLLC
CLD; (19a)

euCLD½VLLCðkÞe1 þ/þVLLCðk�TCÞe1� � TC; (19b)

½1TW 5 euWRM�½VLLCðkÞe1 �VLLCðk� 1Þe1� � ½ITW 5 euWRM�vLLC
WRM; (19c)

euWRM½VLLCðkÞe1 þ/þVLLCðk�TWÞe1� � TW; (19d)

where vLLC
CLD and vLLC

WRM are the vectors

vLLC
CLD ¼ �

ðVLLCðkþ 1Þe1Þu;…; ðVLLCðkþ TCÞe1Þu
	u

; (20a)

vLLC
WRM ¼ �

ðVLLCðkþ 1Þe1Þu;…; ðVLLCðkþ TWÞe1Þu
	u

: (20b)

In (20) TC (TW) indicates the cold (warm) start time required

to switch from OFF (STB) to STB (ON).

Hydrogen storage dynamics
The dynamics of the hydrogen level in the tank is given by

Hsðkþ 1Þ ¼ HsðkÞ �Hs
excðkÞ þ hez

s
eðkÞTs �

zsf ðkÞTs

hf

; (21)

with s 2 {HLC, LLC}, zseðkÞ ¼ Ps
eðkÞdON

e ðkÞ and zsf ðkÞ ¼ Ps
f ðkÞdON

f ðkÞ
and Hs

excðkÞ is a term which models hydrogen export for sup-

plying demand from commercial road vehicles or other

possible customers. From (21), it follows that the electrolyzer/

fuel cell produces/consumes hydrogen only when they are in

the ON state. Notice that the efficiencies he and hf in (21) are

constant values and can be possibly updated when a signifi-

cant deviation with respect to the current adopted values is

measured.

Modeling of the utility grid
The energy selling to the grid is modeled by means of the

logical variable dssellðkÞ: the interaction with the main grid de-

termines if dssellðkÞ ¼ 1 (activation) or dssellðkÞ ¼ 0 (deactivation).

Then, the following constraint holds

dssellðkÞ ¼
(
1; Ps

gðkÞ � xg

0; Ps
gðkÞ> xg;

(22)

where s 2 {HLC, LLC}, Ps
gðkÞ is the grid power that models the

possibility to sell energy to the utility grid, xg ¼ 0 for s ¼ HLC,

xg ¼ ðPHLC
g ðkÞÞ* for s ¼ LLC, with ðPHLC

g ðkÞÞ* being the optimal

schedule computed by the HLC and fed to the LLC, which has

to compensate for the deviations of the actual grid power in

real time. The constraint (22) is equivalent to the following

MLD formulas:

�Ps
gðkÞ þ xg � ðMg þ εÞdssellðkÞ � ε;

Ps
gðkÞ � xg � Mgð1� d

g
sellðkÞÞ;

(23)

whereMg is an upper bound of the function Ps
gðkÞ� xg. In order

to model the grid connection events, the auxiliary slack vari-

able zssellðkÞ is defined as

zssellðkÞ ¼ �ðPs
gðkÞ� xgÞdssellðkÞ; (24)

with s 2 {HLC, LLC}. It is worth noticing that the market

participation is addressed even though only energy selling is

considered, because the integrated system's main purpose is

not to supply a local load nor to generate hydrogen by buying

energy from the grid. The slack variables zssell hide a non-

linearity in the product of two decision variables which

would otherwise make the problem nonlinear and difficult to

handle by numerical solvers. The definition (24) can be recast

linearly as

zssellðkÞ � mgd
s
sellðkÞ;

zssellðkÞ � Mgd
sell
g ðkÞ;

zssellðkÞ � ðPs
gðkÞ � xgÞ �Mgð1� dssellðkÞÞ;

zssellðkÞ � ðPs
gðkÞ � xgÞ þmgð1� dsellg ðkÞÞ:

(25)

Ramp up limits
An instantiation of the constraint

j½PsðkÞ�Psðk�1Þ�euONV
sðkÞe1j � R (26)

for each device limits the slew rate of the input and output

powers of the electrolyzer and the fuel cell, respectively, to

reduce the probability of damage of the devices. In (26) R is the

ramp limit of a device in [kW/h]; the mixed product can be

equivalently defined through the set of inequalities as reported

in Table 1. For the problem at hand, the value of Rwill be higher

than each allowable power variation when commuting among

different discrete states in the automaton in Fig. 2.

Grid-side power balance constraint
The following power balance equation

Ps
wðkÞ � zseðkÞ þ zsf ðkÞ � Ps

avlðkÞ ¼ Ps
gðkÞ (27)

must be taken into account at each time instant k to guarantee

the controller feasibility. From (27), the power balance equality

constraint highlights that the available system power Ps
avlðkÞ

depends on the power Ps
wðkÞ achieved throughwind generation

and the balancing action of the hydrogen storage system.

Feasibility and physical constraints
The electrolyzer and the fuel cell have operating range limits

that will be taken into account by the controller via corre-

sponding instances of

Pmin � PsðkÞ � Pmax: (28)

Also, the stored hydrogen Hs in the tank has to be kept within

the minimum and the maximum limits according to the

operating ranges of the tank, i.e.,

Hmin � HsðkÞ � Hmax: (29)

Optimization problem

In this section the electrolyzer and the fuel cell cost functions,

the grid cost functions, the local load tracking cost functions,

and the hydrogen tracking cost function are given. Such cost

functions will be later combined to design the multi-level

MPC. In what follows, for the HLC and LLC, the correspond-

ing time-steps, sample times and horizons are indicated with
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the same letters k, Ts and T for notational convenience and

readability. This choice is also adopted for all the variables

involved and enables a lighter notation without impairing the

understanding, and the context will solve the ambiguity.

Grid cost functions
This section introduces the interconnectionwith the utility grid

for the sale of energy according to the timescales of the energy

markets. For instance, for intraday market participation, the

grid formulations have been developed within the sampling

time of 1 h by considering the hourly energy price profiles,

whereas, the LLC corresponds to the real-time energy market

with sampling time of 10 min. Note that in the Norwegian

market the prices are given only on an hourly basis, and then

they are sampled to be adapted to the sampling time of the LLC.

Cost function for intraday market participation. In order to

explain the intraday market cost function, the vectors zHLC
sell

and pHLC
sell , which collect the electric power to be exchanged

with the grid and the corresponding energy prices, respec-

tively, at time instant k and across the horizon T ahead in

time, are introduced. Thus, the selling energy revenues are

modeled by the following cost function

JHLC
grid ðkÞ ¼ ��

pHLC
sell

	u
zHLC
sell Ts; (30)

where

pHLC
sell ¼ �

pHLC
sell ðkÞ;…;pHLC

sell ðkþ TÞ 	u;

zHLC
sell ¼ �

zHLC
sell ðkÞ;…; zHLC

sell ðkþ TÞ 	u:

(31)

Notice that the signal related to the selling of energy is nega-

tive. This is done with the aim of maximizing the benefits of

the revenue of selling energy. For further mathematical de-

tails and modeling, we refer to Ref. [9].

Cost function for real-time market participation. The cost

function derived for the real-time market participation takes

into account the fact that any deviation from the contract

signed by the parties results in heavy penalties that are

imposed by the system operator. The real-time electrical

market participation is given analogously to the HLC case as

JLLCgridðkÞ ¼ ��
pLLC

sell

	u
zLLC
sellTs; (32)

where the real-time market profiles pLLC
sell and the auxiliary

variables zLLC
sell , at time instant k and across the control horizon

T, are respectively given by

pLLC
sell ¼ �

pLLC
sell ðkÞ;…;pLLC

sell ðkþ TÞ 	u;

zLLC
sell ¼ �

zLLCsell ðkÞ;…; zLLCsell ðkþ TÞ 	u:

(33)

Operating cost functions
The device operations imply costs deriving by the energy

spent during standby or cold and warm starts depend on the

particular level considered, the number of state switchings

and the amount of working hours that affect many aspects.

These costs can be accounted for bymeans of appropriate cost

functions that will be introduced in this section. Since the

costs pertain both the electrolyzer and the fuel cell, for each of

them an instantiation of the reported cost functions will be

considered in the controller and therefore, according to the

notational style of the paper and as stated in Section System

dynamic modeling, the subscript denoting the specific de-

vice decision variables and parameters is dropped.

HLC operating cost functions. At the HLC, that is for the three

state model, the cost functions for the operating costs of the

electrolyzer and the fuel cell are a corresponding instantiation

of

JHLCðkÞ ¼


crep

NH
þ cOM

�
½1T5eON�uvHLC

1

þ½1T5cHLC
s �usHLC

k

þPSTB½psc�u½IT5euSTB�vHLC
1 ;

(34)

where vHLC
1 ¼ �

ðVHLCðkÞe1Þu;…; ðVHLCðkþ TÞe1Þu
	u

is the vector

of logical variable, crep is the stack replacement cost, NH is the

cycles lifespan, cOM is the operating andmaintenance cost, the

vector sHLC
k is given by

sHLC
k ¼ �

sHLCuðkÞ;…;sHLCuðkþ TÞ
	u

: (35)

cHLC
s ¼ �

cSTBOFF cON
OFF cON

STB cOFF
STB cOFF

ON cSTBON

	u
is the vector of the

startup, shutdown and standby costs and

psc ¼ ½pscðkÞ;…;pscðkþ TÞ �u is the column vector of power

spot prices. For further mathematical details of the HLC cost

functions, we refer the reader to Ref. [58].

LLC operating cost functions. At the LLC, the cost functions for

the account of the operating costs differ from those at the HLC

in that they include the scheduled references of energy and

power provided by the economical dispatch achieved by the

HLC by means of the forecasts, and they target the enabled

mode transitions of the five states automata. Clearly, the

references scheduled by the HLC are constant within the time

intervals spanned by the LLC at each corresponding iteration.

In practice, for both devices a corresponding instantiation of

JLLCðkÞ ¼


crep

NH
þ cOM

�
½1T5eON�uvLLC

1

þ ½1T5cLLCs �uLsLLCs
LLC
k

þ PSTB½psc�u½IT 5 euSTB�vLLC
1

þ PCLD
�
p

sc;T
k

	u½IT 5 euCLD�vLLC
1

þ PWRM½psc�u½IT 5 euWRM�vLLC
1

þ uH
���hLLC �HHLC1T

���2

þuP
��zLLC � zHLC1T

��2
;

(36)

where vLLC
1 ¼ �

ðVLLCðkÞe1Þu;…; ðVLLCðkþ TÞe1Þu
	u

is the vector

of the logical variables in the first columns of VLLC(k)e1, …,

VLLC(kþ T)e1, c
rep, cOM andNHhave samemeaning of the similar

terms in (34), cLLCs ¼ �
cOFFSTB cOFFON cSTBCLD

	u
is the vector of the de-

vice cycle costs, LsLLC is a suitable matrix reported in Appendix

A, which selects the transitions states (sOFF
ON , sSTB

CLD, s
OFF
STB) from the

defined vector sLLC. For further mathematical details of the LLC

device operating cost functions we refer the reader to Ref. [10].
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A substantial difference between (34) and (36) is that, in the

latter case, two additional terms are considered, which

represent the hydrogen and power reference tracking, with

such reference provided by the HLC (the latter with sampling

rates which are subsampling of the LLC one). Specifically, we

define zLLC ¼ �
zLLCðkÞ;…; zLLCðkþ TÞ

	u
. The term

uH
���hLLC � HHLC1T

���2, according to the weight uH, accounts for

the deviation of the real-time hydrogen level hLLC in the tank

at time-step k and across the horizon T from the level HHLC

scheduled by the HLC for the referenced time interval. The

term uP
��zLLC � zHLC1T

��2, according to the weight uP, accounts

for the deviation of the real-time available power zLLC at time-

step k and across the horizon T from the level zHLC scheduled

by the HLC for the referenced time interval.

Cost function for load tracking
Similarly to the other costs, the load demand is also tracked in

both control layers.

Cost function for HLC load tracking. The load tracking cost is

computed as the mismatch between PHLC
avl ðkÞ and PHLC

ref ðkÞ, i.e.,

JHLC
d ðkÞ ¼

���pHLC
avl � pHLC

ref

���2

; (37)

where pHLC
avl ¼ �

PHLC
avl ðkÞ;…;PHLC

avl ðkþ TÞ
	u

is the available power

vector and pHLC
ref ¼

h
PHLC
ref ðkÞ;…;PHLC

ref ðkþ TÞ
iu

is the vector of the

load demand forecasts at time instant k and across the control

horizon T.

Cost function for LLC load tracking. For real-time operations,

the load tracking is achieved through the minimization of

JLLCd ðkÞ ¼ pLLC
avl � PHLC

avl 1T
2
; (38)

where pLLC
avl is the available system power and PHLC

avl is the

scheduled available power that is needed to be tracked by the

LLC.

Cost function for hydrogen tracking
One main task of the HLC is to track the hydrogen reference

demand HHLC
ref . To this aim, the cumulative squared error

JHLC
H ðkÞ ¼ hHLC

exc � hHLC
ref

2
(39)

between the hydrogen reference hHLC
ref ¼

h
HHLC

ref ðkÞ;…;

HHLC
ref ðkþ TÞ

iu
and the corresponding decisions hLLC

exc ¼�
HHLC

exc ðkÞ;…;HHLC
exc ðkþ TÞ

	u
is considered. For the reader's con-

venience, a comparison between the HLC and the LLC policies

is reported in Table 3, where, for clarity, the less compact form

of the cost functions presented in Refs. [9,58] is used.

Controller design

The block scheme of the proposed multi-level controller is

shown inFig. 3. The LLCexecutes every 10minwith a scheduled

horizon of 1 h, while the HLC executes every 1 h with a sched-

uled horizon of 24 h. In this way, the HLC optimization can be

performed on longer timescales with low resolution, while for

the real-time dynamics considered in the LLC, higher resolution

is achieved. As it canbenoticed, at theHLC the scheme features

a sequential approach where firstly the hydrogen demand

tracking is addressed. Then, the achieved optimal hydrogen

level ðJHLC
H Þ* in the tank is used as a constraint in the following

optimization stage where the load tracking demand and the

participation to the electricity market are addressed. In this

way, the hydrogen production for FCEVs is obtained with the

unconditional highest priority against the remainingobjectives.

The other constraints are those discussed in the paper in pre-

vious sections, indeed. The proposed cascaded MPC for the

HESS can provide an input control sequence which both sat-

isfies the system constraints and minimizes the devices oper-

ating costs according to the considered control layer.

The following two subsections introduce the formulation

of the HLC and the LLC, respectively.

HLC design
The mathematical models for the operations of the devices

over the largest timescales, i.e., those addressed by the HLC,

consist of the corresponding three states automata, including

ON, OFF and STB states. The purpose of the HLC is to provide a

strategy based on forecasts that are assumed unaffected by

any kind of uncertainty in this paper. The controller handles

hydrogen production for FCEVs, the local load tracking and

the energy market participation. At the HLC, k indicates the

discrete-time with resolution of 1 h.

Sequential MPC scheme. In order to formulate theMPC problem

for HLC, the set

CHLC
k ¼

n
zHLC
e ; zHLC

f ;pHLC
e ;pHLC

f ;pHLC
avl ;p

HLC
g ;

vHLC
1 ;sHLC

k ;gHLC
1 ;gHLC

2



;

(40)

of the decision variable vectors at time-step k is defined,

where pHLC
g ¼ �

PgðkÞ;…; Pgðkþ TÞ 	u is the decision vector of the

grid power, and all the other vectors are defined in a similar

way (not reported here for the sake of brevity). Therefore, the

sequential optimization problem can be recast as

�
JHLC
H

�* ¼ min
CHLC
kjT

JHLC
H ðkÞ

s:t

Discrete logical states ð10Þ � ð12Þ;
Mode transitions ð16Þ � ð17Þ;

Hydrogen dynamics ð21Þ;
Grid constraints ð23Þ � ð25Þ;

Ramp up constraints ð26Þ;
Power balancing equation ð27Þ;

Physical constraints ð28Þ � ð29Þ;
vHLC
1 2½0; 1�3;sHLC2½0;1�6;

gHLC
1 ;gHLC

2 2f0; 1g3;
dHLC
g 2f0;1g;

(41)

where CHLC
kjT ¼ CHLC

k ;…;CHLC
kþT , and then
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Table 3 e Optimization problem: comparison between the HLC and the LLC policies.

Optimization problem

High level control Low level control

System modeling 3 states automata {OFF, STB, ON} 5 states automata{OFF, STB, ON, CLD, WRM}

Timescales Larger timescales (24 h/1 h) Shorter timescales (1 h/10 min)

Objectives Hydrogen and load tracking þ intraday market þ operating Load tracking þ real-market þ operating

Grid cost functions JHLC
grid ðkþjÞ ¼ �� pHLC

sell ðkþjÞ zHLC
sell ðkþjÞ	Ts JLLCgridðkþjÞ ¼ �� pLLC

sell ðkþjÞ zLLCsell ðkþjÞ	Ts

Operating cost functions
JHLCðkþ jÞ ¼



Crep

NH
þ COM

�
dONðkþ jÞ

þCON
OFFs

ON
OFF;iðkþ jÞ

þCOFF
ON sOFF

ON ðkþ jÞ
þCSTB

ON sSTBON ðkþ jÞ
þCON

STBs
ON
STBðkþ jÞ

þCOFF
STBs

OFF
STBðkþ jÞ

þCSTB
OFFs

STB
OFFðkþ jÞ

þ½pscðkþ jÞPSTBdSTBðkþ jÞ�Ts

JLLCðkþ jÞ ¼


Crep

NH
þ COM

�
dONðkþ jÞ

þCOFF
ON sOFF

ON ðkþ jÞ
þCSTB

CLDs
STB
CLDðkþ jÞ

þCOFF
STBs

OFF
STBðk þ jÞ

þ�
pscðkþ jÞPSTB dSTBðkþ jÞ

þpscðkþ jÞPCLDdCLDðkþ jÞ
þpscðkþ jÞPWRMdWRMðkþ jÞ	Ts

þuP
�
zLLCðkþ jÞ � zHLCðkÞ�2

þuH
�
HLLCðkþ jÞ � HHLCðkÞ�2

Load tracking cost functions
JHLC
d ðkþjÞ ¼

�
PHLC
avl ðkþ jÞ � PHLC

ref ðkþ jÞ
�2

JLLCd ðkþjÞ ¼ �
PLLCavl ðkþ jÞ � PHLC

avl ðkþ jÞ�2
Hydrogen tracking cost functions

JHLC
H ðkþjÞ ¼

�
HHLC

exc ðkþ jÞ � HHLC
ref ðkþ jÞ
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�
JHLC
FP

�* ¼ min
CHLC
kjT

JHLC
FP ðkÞ

s:t Similar to ð41Þ;
JHLC
H ðkÞ � �

JHLC
H

�*
;

(42)

where the cost function in (42) for the HLC is

JHLC
FP ðkÞ ¼ rlJ

HLC
l ðkÞ þ rgJ

HLC
g ðkÞ þ reJ

HLC
e ðkÞ þ rf J

HLC
f ðkÞ (43)

with JHLC
e ðkÞ and JHLC

f ðkÞ two different instantiations of (34) for

the electrolyzer and the fuel cell, respectively, rl, rg, re and rf

the weights of the load tracking, grid participation, elec-

trolyzer and fuel cell operating cost functions, respectively,

that can be tuned so as to achieve a desired prioritization

among them. Such mixed-integer constraints can, indeed,

be incorporated in an optimization problem handled by

general purpose solvers. For the reader's convenience, the

references zHLC
e ; zHLC

f ; dHLC, pHLC
e , pHLC

f and pHLC
g scheduled by

the HLC have the same meaning of the terms in (40),

respectively.

LLC design
The LLC receives and tracks the references scheduled by the

HLC, i.e., zHLC, dHLC, pHLC, and pHLC
g in order to implement the

HLC policy in real-time.

MPC scheme for LLC. This subsection introduces the LLC

formulation for the participation of the electricity market to

maximize the revenue generations and load tracking. In order

to achieve the minimization problem in an MPC framework,

the following set at time-step k is introduced

Fig. 3 e Multi-level cascaded MPC control block diagram.
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CLLC
k ¼

n
zLLC
e ; zLLC

f ;pLLC
f ;pLLC

f ;pLLC
avl ;p

LLC
g ;

vLLC
1 ;sLLC

k ;gLLC
1 ;gLLC

2



;

where the included elements are defined similarly to (40) with

different values of k and T. Then, the MPC problem for the LLC

is

�
JLLCFP

�* ¼ min
CLLC
kjT

JLLCFP ðkÞ

s:t Discrete logical states ð10Þ � ð12Þ;
Mode transitions ð16Þ � ð17Þ;

Operation constraints ð19Þ;
Hydrogen dynamics ð21Þ;
Grid constraints ð23Þ � ð25Þ;

Ramp up constraints ð26Þ;
Power balancing equation ð27Þ;

Physical constraints ð28Þ � ð29Þ;
vLLC
1 2½0; 1�5;sLLC2½0;1�20;
gLLC
1 ;gLLC

2 2f0; 1g5;

(44)

where CLLC
kjT ¼ CLLC

k ;…;CLLC
kþT, and the cost function

JLLCFP ðkÞ ¼ rgJ
LLC
g ðkÞ þ rlJ

LLC
l ðkÞ þ reJ

LLC
e ðkÞ þ rf J

LLC
f ðkÞ (45)

gathers the operating costs JLLCi , i 2 {e, f}, of the devices, and

the tracking cost JLLCg of the power injected into the grid against

the grid operator reference, and rg, rl, re, and rf are weights

tuned to achieve an appropriate blending of the corresponding

cost functions.

Integrated multi-level MPC algorithm

The multi-objective MPC control of the system under inves-

tigation according to the fuel production use case is reported

in Algorithm 1, for the sake of completeness. As explained in

the previous section, the two optimization problems (41) and

(42) are solved at the HLC and the optimization problem (44) is

solved at the LLC. In Algorithm 1, Nh and Nm refer to the two

simulation horizons for the HLC and the LLC, respectively.

Moreover, the problems are defined w.r.t. different sampling

times and, therefore, different discrete time-steps; h and m

indicate the time-steps used for the HLC and the LLC,

respectively. In order to improve the readability, the optimal

control input sequence for the first optimization problem is

given by C*hjT ¼ fC*h; C*hþ1; …; C*hþTg, where C*hþj is the optimal

value of CHLC
kjT at the generic time-step h þ j. Then, only the first

optimal control input is applied to the system. The optimal

control input sequence used by the LLC is, instead, collected in

the set C*mjT which is defined similarly to C*hjT.

Computation details of the integrated algorithm
The analysis and the experimental validation have been per-

formed through simulations over a T ¼ 24 h and T ¼ 1 h

scheduled horizon with Ts ¼ 1 h and Ts ¼ 10 min sample times

according to the considered control layer.

Table 4 reports the devices parameters involved in the in-

tegrated algorithm. In the STB state degradation of the devices

is mitigated since they are kept warm. Consequently, the cost

of switching from STB to ON is lower among the other tran-

sitions, such as OFF to ON and from ON to OFF. However,

when the devices are in STB, a constant PSTB power is

consumed. Moreover, the stack replacement costs, denoted as

Crep, are set as

Crepx0:27� Capex; (46)

corresponding to 2
3 of the 40% of Capex.

Table 4 e Devices parameters.

Electrolyzer parameters

CSTB
e ¼ 0:0042 V NHe ¼ 40,000 h

CON
e ¼ 0:123 V COFF

e ¼ 0:0062 V

he ¼ 0.019 kg/kWh COM
e ¼ 0:002 V=h

Capexe ¼ 1300 V/kW Pmax
e ¼ 3000 kW

Pmin
e ¼ 300 kW PSTBe ¼ 1 kW

NYe ¼ 8000 h PCLDe ¼ 1 kW

PWRM
e ¼ 1kW Nmax

e ¼ 5000 cycles

Fuel cell parameters

CSTB
f ¼ 0:003 V NHf ¼ 40,000 h

CON
f ¼ 0:01 V COFF

f ¼ 0:005 V

hf ¼ 17 kWh/kg COM
f ¼ 0.01/h

Capexf ¼ 1500 V/kW Pmax
f ¼ 120 kW

Pmin
f ¼ 12 kW PSTBf ¼ 1 kW

NYf ¼ 8000 h PCLDf ¼ 1 kW

PWRM
f ¼ 1kW Nmax

f ¼ 5000 cycles

Tank parameters

Volume ¼ 10 kg Pressure ¼ 30 bar
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The integrated algorithm is briefly represented in Fig. 3.

The implementation and simulation of the proposed

controller have been performed using MATLAB/YALMIP/

GUROBI on a PCwith an Intel Core (TM) i7-7700HQ 2.8 GHz and

a RAM capacity of 16 GB. The time required for solving the

optimization problem on such a PC is equal to 60 s. In order to

properly weigh the different terms in the cost functions suit-

able weights have been chosen through a series of simula-

tions. These tests will be repeated once the construction of the

plant will be completed.

Results analysis and discussion

Numeral simulations are provided to validate the proposed

strategy in this section. Although the simulations are pre-

liminary to the integration of the proposed controller in the

system under investigation, the data of the HAEOLUS plant

have been used where possible. Since several scenarios can

occur, the simulations include many power production and

consumption profiles. The results show that the controller

reaches the control goal and, at the same time, allows the

satisfaction of the constraints. We wish to emphasize here

that the proposed dynamic models and control strategy can

also be generalized for other case studies, i.e., it is not specific

to the HAEOLUS plant only. Indeed, the model and control

based on the multi-level MPC scheme can be used for the

general case of hydrogen storage plants.

Via hydrogen storage utilization, the renewable wind

availability, and a possible connection to the utility grid, the

solver satisfies the hydrogen demand from the external con-

sumers with the highest priority, and simultaneously with

second priority satisfies the electric reference Pref(k) with the

system available power Pavl(k).

The control algorithm has been analyzed via a series of

simulations to capture the effects of the terms included in the

cost functions by their activation and deactivation. In partic-

ular, when the switching costs and the degradation costs are

accounted in the optimization, our algorithm shows to reduce

the operating costs by 5% with respect to the case when they

are neglected (this is the case of the revised literature). For

similar wind and load profiles, this results in more than 300

commutations saving per year. Further benefits of our strategy

in conveniently exploiting the stand-by, cold and warm states

can be observed for the case of fast power imbalances or grid

islanded mode. This fast response feature is not currently

present in the literature.

Simulations under a stressing plant scenario over a 24 h

horizon have been performed to present the efficacy of the

integrated algorithm for fuel production use cases. It is

important to highlight here that the contribution of the

implemented algorithm is to control the HESS so as to enable

the wind farm to operate conforming to the fuel production

use cases [7] as per the project goals [59].

In order to validate the efficacy of the multi-layer MPC

implemented in this research study, two scenarios have been

achieved. In the first scenario, equal weight choices for

tracking the local load demand and participation in the energy

market have been assigned. In the second scenario, the

weights are changed: one sets greater than the other, and vice

versa. In both scenarios, the fulfillment of the hydrogen de-

mand has the highest priority.

Hydrogen demand satisfaction

Fig. 4 shows several profiles considered in the numerical

analysis of the multi-level MPC. In particular, Fig. 4a reports

the power generated by the wind farm and the electric load

requested by users, respectively. Fig. 4b reports the hydrogen

reference demand as provided by the HLC, while Fig. 4c shows

the energy market price profile considered in the control

implementation. In turn, the energy equality constraint (27)

will be enforced.

Fig. 5 explains the working of the HLC. In particular, as

shown in Fig. 5a, the final exchange of hydrogen exactly

matches what was requested by hydrogen consumers in all

24 h of the day and also the system available power exactly

matches the requested load, as shown in Fig. 5b. Moreover, the

hydrogen level is within the upper and lower bounds of the

HESS unit as shown in Fig. 5c.

Fig. 4 e Data profiles.
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Regard the energy market participation, based on a day

long-term control horizon, at each time-step k, the controller

is designed to take decisions of the energy selling with the

proper modeling and switching of the logical variable dg(k)

from 0 to 1, as Fig. 5d shows. Interestingly, from 19 to 20 h, the

controller decides not to sell electricity to the market even

though the prices are increasing. However, thanks to this

decision, the load demand is satisfied, and the hydrogen level

in the tank is also able to increase so as to comply with future

operations. This is compatible with equal weight choices for

tracking the local load demand and participation in the energy

market and also shows the kind of nontrivial decisions that

the developed algorithm can address. Note that the controller

not only tracks successfully the user requested load, but the

contractual loads have also been supplied.

Fig. 6 shows theworking of the LLC policy, i.e., thatwhich is

implemented by the real-time algorithm. The reason for

introducing a double reference gives a degree of freedom in

the controller, which allows correcting the deficit scenario

with an exceeding scenario compared to the forecast carried

out at the HLC. The use of multi-level MPC allows one to

manage from the long-term control horizon given at the HLC

linked to the real-time operational scenario of this study. The

purpose of the LLC is to track the references set by the HLC to

match generation and load demands. The LLC executes every

10 min with a scheduled horizon of 1 h discretized in periods

of 60 min.

Specifically, Fig. 6a shows that the available power exactly

matches with what was requested in terms of user load
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Fig. 6 e LLC controller.
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demand achieved by the HLC. Fig. 6b shows the evolution of the

hydrogen level in the tank. In particular, this level also takes

into account the hydrogen provided to the electric vehicles, the

load demand tracking and the energymarket participation. The

implemented strategy is such that, sometimes, the load

demand is not met, and the controller decides not to sell elec-

tricity to the market, as shown in Fig. 6c. However, this is in

compliance with the objective of the fuel production use case

where other additional objectives than the provision of

hydrogen to FCEVs can be considered as optional features and

not strict requirements. Moreover, even if the same wind gen-

eration, load demand andmarket price profiles for the HLC and

the LLC have been assumed, the two policies are very different,

especially in the market participation. This difference can be

explained by the fact that the operating cost functions of the

HLC and the LLC are different since, e.g., at the HLC three states

automata are used while at the LLC five states automata are

used in order to consider also cold and warm starts, and not all

the transitions are enabled for five states automata.

A comparison between the HLC and the LLC policies and

evaluations of the relevant parameters are provided in Fig. 7.

Fig. 7a shows the power of the electrolyzer and the fuel cell for

both the HLC and the LLC, respectively. It can be seen that the

LLC successfully tracks the references set by the HL-MPC.

Similarly, the hydrogen level in the tank and the available

system power for both the HLC and the LLC are detailed in

Fig. 7b and c, respectively. Finally, the power selling to the grid

as one of the objectives of the control strategy for both levels is

shown in Fig. 7d. The LLC successfully participates in the en-

ergy market as per the timescale.

Controller behavior for different weights

This section provides a sensitive analysis of how the weight

factors rg and rl affect system operation. The same data sce-

nario, in terms of local demand, wind power and market

profiles, is used to give an accurate comparison.
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Fig. 8 e Controller behavior for different weights.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x18

Please cite this article as: Abdelghany MB et al., Two-stage model predictive control for a hydrogen-based storage system paired to a
wind farm towards green hydrogen production for fuel cell electric vehicles, International Journal of Hydrogen Energy, http://
dx.doi.org/10.1016/j.ijhydene.2022.07.136

https://doi.org/10.1016/j.ijhydene.2022.07.136


For both scenarios rl > rg and rg > rl,
1 the load demand

tracking and the interaction with the utility grid are shown in

Fig. 8a and Fig. 8b, respectively. Based on the weight factors,

the numerical solver prioritizes either to participate in the

energy market to maximize revenues (if rg > rl) or to meet the

load demand with respect to selling energy to the grid (if

rl > rg). In the proposed scenario, for rg > rl, during the hours

8e10 the available power Pavl(k) decreases, thus resulting in

non-compliance with the local load demand. Conversely, for

rl > rg, during the hours 8e10 the available power Pavl(k) in-

creases by successfully tracking the load profile, and then

selling the remaining energy to the grid.

Conclusions

In this research study, models used in a controller based on

the MPC framework for HESS integrated with a wind farm

have been proposed. The dynamic models of both the elec-

trolyzer and the fuel cell map their operating modes with

corresponding discrete logical states, together with the

continuous dynamics concerning the hydrogen production/

consumption.

The novel contribution of the proposed MPC control lies

within the consideration of the expensive hydrogen pro-

duction/consumption devices degradations that occur at

each time-step k due to the switching states between the

different operating modes. This switching, if not optimized,

would decrease the life cycles and efficiencies of the devices.

Furthermore, the system operational and maintenance costs

have also been accounted for. MLD models have been adop-

ted to capture the correct behavior of the plant. In particular,

the proposed MPC is a multi-layer scheme, in which at the

first layer the hydrogen demand for the FCEVs is satisfied,

and at the second layer the surpluses of the hydrogen

available in the tank are re-electrified through the fuel cell

for meeting local and contractual loads. Moreover, the cor-

rect working of the devices and their operating modes have

been verified numerically.

The MPC proposed in this paper will be deployed in the

under construction HAEOLUS plant. Indeed, this research

work has been designed as part of the EU2020 funded project

HAEOLUS, where the HESSwill be coupled with the wind farm

in North Norway.

Summarizing, the proposed study contributes to the liter-

ature with:

1. The implementation of a novel wind-hydrogenmodel for a

multi-level controller based on the MLD framework that

takes into account the different degradation issues of the

HESS;

2. The implementation of a two-stage MPCs which takes into

account the external hydrogen consumer profiles at first

stage, and handles the frequently varying electric loads at

second stage;

3. The comprehensive addressing of many practical aspects

that can prevent the penetration of wind farms into the

main grid due to a lack of profitability of the initiative in

case they are not properly managed.

Future works will investigate hydrogen production for

commercialization purposes (see the IEA-HIA Task 24 final

report).
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Abstract: Smooth power injection is one of the possible services that modern wind farms could
provide in the not-so-far future, for which energy storage is required. Indeed, this is one among
the three possible operations identified by the International Energy Agency (IEA)-Hydrogen Im-
plementing Agreement (HIA) within the Task 24 final report, that may promote their integration
into the main grid, in particular when paired to hydrogen-based energy storages. In general, energy
storage can mitigate the inherent unpredictability of wind generation, providing that they are de-
ployed with appropriate control algorithms. On the contrary, in the case of no storage, wind farm
operations would be strongly affected, as well as their economic performances since the penalty fees
wind farm owners/operators incur in case of mismatches between the contracted power and that
actually delivered. This paper proposes a Model Predictive Control (MPC) algorithm that operates
a Hydrogen-based Energy Storage System (HESS), consisting of one electrolyzer, one fuel cell and
one tank, paired to a wind farm committed to smooth power injection into the grid. The MPC relies
on Mixed-Logic Dynamic (MLD) models of the electrolyzer and the fuel cell in order to leverage
their advanced features and handles appropriate cost functions in order to account for the operating
costs, the potential value of hydrogen as a fuel and the penalty fee mechanism that may negatively
affect the expected profits generated by the injection of smooth power. Numerical simulations are
conducted by considering wind generation profiles from a real wind farm in the center-south of
Italy and spot prices according to the corresponding market zone. The results show the impact of
each cost term on the performances of the controller and how they can be effectively combined in
order to achieve some reasonable trade-off. In particular, it is highlighted that a static choice of the
corresponding weights can lead to not very effective handling of the effects given by the combination
of the system conditions with the various exogenous’, while a dynamic choice may suit the purpose
instead. Moreover, the simulations show that the developed models and the set-up mathematical
program can be fruitfully leveraged for inferring indications on the devices’ sizing.

Keywords: hydrogen-based energy storage systems; wind farms; power smoothing; optimal opera-
tions; model predictive control; mixed-logic dynamic modeling

1. Introduction

In 2013, the IEA released the final report of Task 24 operating under the HIA and
carried out between spring 2007 and autumn 2011 [1]. The purpose was “to provide an
overview for technologies which have a direct influence on development and implementation of
systems integrating wind energy with hydrogen production [. . . ]”, or, in other words, wind-
hydrogen systems. The report categorizes wind-hydrogen systems (i.e., wind farms paired
to HESSs) with respect to their main purpose and in terms of relevant sizes, identifying
three categories. Systems under the “Electricity-storage” category target power smoothing
against fluctuations in wind power by “[. . . ] producing hydrogen at times of surplus power pro-
duction and re-electrifying it during periods of underproduction. Such devices could facilitate wind
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power integration on a large scale, independent of support from fossil-fuel power stations.” Thus,
multiple balancing services can be provided to the grid addressing different timescales:
from the shorter, where power balancing for voltage and frequency stability is addressed,
to the mid-range, where energy balancing is addressed, to the larger, where the grid is
supported in order to mitigate temporary bottlenecks.

This is also reflected in the scientific literature on power smoothing in wind farms,
where even larger timescale ranges are addressed. For instance, in Zhao et al. [2] the authors
investigate how the inertial energy of the turbines can be optimized in order to provide
power smoothing across timescales of seconds, while timescales of the order of tens of
seconds are, instead, addressed by Lyu et al. [3] where two strategies are developed and
presented: firstly, power smoothing is targeted by simultaneous operations of the dc-link
voltage control, the rotor speed control and the pitch angle control; then, a hierarchical ar-
rangement is also proposed, which suitably and dynamically combines the three individual
control schemes during the operations across timescales of the order of hundreds of seconds.
Moving forward to timescales of the order of minutes, for example Lyu et al. [4] develops
an automatic generation control for power smoothing which is set in response to the actual
grid needs. At this point, the literature jumps to timescales of the order of hours, targeting,
e.g., market participation/demand response programs [5–7] but without power smoothing,
which instead is investigated in Abdelghany et al. [8], where an MPC-based strategy is
developed featuring a two-step sequential optimization: firstly, a function of the previous
output power variations, such that the new decided value does not lie too far from previous
ones, is minimized; secondly, other costs are minimized, such as, e.g., a reference tracking
cost, and, among the others, a similar function used in the first step is constrained so as not
to exceed the previously optimal computed value. In this paper, we investigate a scenario
similar to [8], which shares some of the authors of this paper; however, later, the differences
will be highlighted in order to identify the major advancements and novelties beyond the
state of the art.

Many other aspects concerning power smoothing in wind farms are also addressed
by the literature. For instance, in Koiwa et al. [9] a control approach for power smoothing
is proposed such that the required rated power of the used energy storage system can be
reduced against what would be a typical design. In Yang et al. [10], the power smoothing that
can be inherently achieved by clusters of wind turbines at the point of common coupling, is
investigated against many parameters, such as different timescales and sampling intervals,
wind speed, number of wind turbines, etc. In general, power smoothing in renewable energy
plants is a very wide topic. The interested reader can refer to Barra et al. [11], where wind
farms are specifically addressed, to Lamsal et al. [12], which also addresses photovoltaic
generation and the references therein for comprehensive reviews.

Another interesting aspect relates to the used energy storage system. As an example,
in Zhai et al. [13] the authors investigate the effectiveness of superconducting magnetic
energy storage for power smoothing, while in Yang and Jin [14] the authors target output
power smoothing with superconducting energy storage along with the additional aspects
of low voltage ride-through capacity and power oscillations under asymmetrical faults;
in Wang et al. [15], a dual battery energy storage system is considered in order to reduce the
number of charging/discharging per battery, thus improving each battery’s lifetime and
the energy storage system economy in general. A good review of the literature targeting
different kinds of energy storage systems (e.g., battery-, supercap-, flywheel-based, etc.),
can be found always in Barra et al. [11], while aspects related to the performances of
battery-based energy storage systems, with the aim of power smoothing in wind farms, are
investigated in Sattar et al. [16]. Finally, hybrid configurations are also addressed [17,18].
Of course, the adopted energy storage systems interplay also with the possible timescales
where they can be effectively operated, as show by [13,14] where timescales of the order of
fractions of seconds and seconds are targeted, respectively.

Unfortunately, the above-mentioned papers do not address the case of HESSs. In this
direction, some papers can be found roughly dating back to the first decade of 2000 [19–22].
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Then, the topic shows a lesser relevance in the second decade while gaining a slightly
increasing momentum in the current one, for instance, addressing hybrid storage systems
hydrogen- and battery-based [23], hydrogen- and superconducting magnet-based [24],
or coordinating a kinetic energy and a virtual discharge control [25].

In general, except for Abdelghany et al. [8], to the best of the authors’ knowledge,
the literature seems to not address exactly the use-case energy-storage as identified by the
IEA-HIA in the final report of Task 24. In particular, this paper shares some similarities
with Abdelghany et al. [8]:

• The scenario, i.e., a wind-hydrogen system targeting the use-case energy-storage as per
the IEA-HIA Task 24 final report;

• The MLD modeling for including devices’ dynamics depending on logical conditions;
• The MPC-based approach;
• The minimization of the devices’ operating costs.

However, many differences exist and additional aspects are considered:

• Accounting for the power smoothing based on tracking a smooth profile contracted
with the Transmission System Operator (TSO);

• Accounting for the participation to the spot market, which is competing with the aim
of providing smooth power to the grid, since, for instance, the controller is also pushed
not to electrolyze in case of both wind production and spot market prices peak;

• Accounting for the penalties that the wind farm owner/operator incurs in case the
delivered power is below a threshold against what contracted;

• Accounting for the inherent hydrogen value, which is competing with the aim of pro-
viding smooth power to the grid, yet it is appealing for the wind farm owner/operator
for leveraging hydrogen production for other purposes aside from the main one (i.e.,
power smoothing);

• Simpler devices’ models based on practical considerations about their functioning and
cost impacts on the optimal operations;

• Simpler control architecture with no sequential optimization;
• Simulations with real data from a wind farm in the center-south of Italy and real

spot prices.

Finally, also fee-aware mechanisms seem not addressed by the literature, at least in
the case of wind farms connected to the grid, to the best of the authors’ knowledge.

The rest of the paper is organized as follows: In Section 2 the used mathematical
frameworks and the development of the algorithms are presented, while Section 3 reports
the simulation scenarios and corresponding results. Further, there we also provide an
impact analysis of each cost term considered and possible choices of the corresponding
weights. Section 4 concludes the paper.

2. Materials and Methods

The core tools used for the proposed investigation are the MLD framework for model-
ing and the MPC scheme for control.

2.1. MLD Framework

Systems governed by physical laws, logic rules and constraints are known as MLD
systems and can be modeled as dynamic equations subject to linear inequalities where real
and integer/Boolean variables appear [26], which establishes the so-called MLD framework.
The power of the framework is that, for instance, qualitative facts can also be rephrased
into logic rules and thus accounted for via inequalities in, e.g., a possible mathematical
program implemented and solved via an MPC scheme for control purposes, as happens in
this paper.

The underlying machinery can be easily understood with a few examples, while
for a thorough presentation the reader is referred to Bemporad and Morari [26] and the
references therein. An important ingredient is the link that can be established between
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a function, say f , and an indicator variable, say δ, such that, e.g., f > 0 implies δ = 1.
The indicator variable can be a logic variable when systems with dynamics depending also
on logic conditions are targeted. In other terms, an important ingredient is how logical
statements can be translated into mathematical inequalities. For instance, we consider the
statement [ f > 0] → [δ = 1], where the brackets indicate the sentence resulting by the
articulation of the mathematical condition they enclose, i.e., [ f > 0] stands for “the function
f is positive” and [ f > 0] → [δ = 1] indicates the compound statement “the function f is
positive implies the indicator variable δ is 1”. Thus, it is easy to check that [27]

[ f > 0] → [δ = 1] is equivalent to f ≤ (max f ) δ. (1)

Indeed, if f > 0, the only way for the mathematical inequality on the right of (1)
to be true is that δ = 1, while, if f ≤ 0, the statement on the left of (1) does not enable
any conclusion about δ and the same holds for the inequality on the right. We stress
that, in (1), max f is necessary since the inequality must hold for any value f can take,
but any other number greater than max f is sufficient. Indeed, sometimes it is easier to
find an overestimate of max f , though this may imply higher computational burdens for an
optimizer, e.g., in case the models are used in a mathematical program that is subsequently
solved numerically.

Now, in the paper we will also often use [ f ≤ 0] → [δ = 1] which can be easily
worked out by rephrasing it similarly to (1). Firstly, we notice that [ f ≤ 0]→ [δ = 1] can
be rephrased as [ f < ε]→ [δ = 1], where ε > 0 is a tolerance such that zero is accounted
for and inequality is assumed satisfied. This comes also in handy when the equations are
implemented on a digital computer such that the tolerance can be set to the machine’s
precision. Then, by another small rephrasing, we obtain [ f − ε < 0]→ [δ = 1], following
[− f + ε > 0]→ [δ = 1]. Thus, by comparison with (1), we achieve

[ f ≤ 0] → [δ = 1] is equivalent to f ≥ ε + (min f − ε) δ, (2)

since max− f = −min f .

2.2. MPC Schemes

MPC schemes are widely adopted control schemes where, in a typical and simple
implementation, a control problem is cast at discrete-time k, such that, at each time step,
optimal commands u∗k are provided to the target plant via the optimization of a cost function
subject to some constraints, see Figure 1. The optimization is carried out across a (prediction)
horizon of duration N ahead in the future, with a set of constraints including also the plant
dynamics, and resulting in N optimal commands, say u∗k, . . . , u∗k+N−1. However, only the
first one is applied while the others are discarded, because the optimization is re-triggered
at k + 1, such that the new state of the plant, determined by the implementation of u∗k, is
considered and updated exogenous conditions are handled as well.

Of course, as already said, what is explained refers to one of the many possible
implementations of MPC that can be found in the literature. Yet, this suffices for the
exposition of the results that are presented in this paper.
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2.3. Assumptions and Notation

Throughout the paper, the following assumptions and notations will be used: α,β ∈
{STB, ON} are two generic indices, where STB, ON are the admissible logic states for a
device’s corresponding automaton; sometimes α and β are used in conjunction and in
this case we agree that α 6= β; logic variables are δα, σα

β , ζα≤, ζα≥ ∈ {0, 1} and mixed-logic
variables are ys with some superscript, e.g., yα given by the product of p δα, with p ∈ R+;
small slanted fonts are used to indicate time-varying quantities at current discrete-time
k; Ts and N are the sampling time and the control horizon, respectively, and the notation
( )+ is used to indicate a time-varying variable at the next time step; sometimes the
subscripts e and f will be used to highlight that a quantity refers to the “e”lectrolyzer or to
the “f”uel cell, respectively. Finally, 1 and 0 indicate column vectors of suitable dimensions
with unitary and null entries, respectively, and bold letters indicate vectors that, in this
paper, gather samples of the corresponding scalar time-varying quantity, increasingly
from the current time, across the horizon N, e.g., δα =

[
δα(k) . . . δα(k + N− 1)

]
and

(δα)+ =
[
δα(k + 1) . . . δα(k + N)

]
.

For the reader’s convenience, in Table 1 the list of symbols used throughout the paper
is also reported. There, we followed the rule that, for each reported symbol class, Greek
letters go first.

Table 1. List of symbols.

Variables

δα Logic variable of a generic state α

δfee Logic variable indicating the activation of a penalty fee
σα
β Logic variable of two generic states α and β

yα Mixed variable of a generic state α

yfee Mixed variable involved in the activation of a penalty fee
ζα≤, ζα≥ Logic (slack) variables of a generic state α

loh Level of hydrogen in the tank

e Price profile contracted by the wind farm operator/
owner with the Transmission System Operator (TSO)

p A generic device’s power
pgrid Power delivered to the grid
pref Reference power profile to track
pw Power profile by wind generation
s Energy prices in the spot market

Cost terms

cN Total costs across a horizon N
cσ (cσ

N) Cost term related to state switchings of a generic device (across a horizon N)
cloh (cloh

N ) Cost term related to the level of hydrogen in the tank (across a horizon N)
cOP (cOP

N ) Cost term related to the operations of a generic device (across a horizon N)
cpgrid (c

pgrid

N ) Cost term related to the tracking error of a power reference (across a horizon N)
cfee (cfee

N ) Cost term related to the activation of a penalty fee (across a horizon N)
dN Total costs across a horizon N of a generic device
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Table 1. Cont.

Labels

STB, ON Names of logic states of a generic device’s automaton

Parameters
εfee Small tolerance
Πe Productivity of the electrolyzer
Πf Productivity of the fuel cell
CH Cost of hydrogen
CON

STB Cost for a generic device to switch from STB to ON
CSTB

ON Cost for a generic device to switch from ON to STB
Cs Part of earnings paid by the wind farm operator/owner to a third party company
DN Set of a generic device’s decision variables across a horizon N
Hmax Maximum rated amount of hydrogen in the tank
LOHmax Maximum level of hydrogen in the tank
LOHmin Minimum level of hydrogen in the tank
Mα,max Upper-bound estimate of p− Pα,max

Mα,min Upper-bound estimate of p− Pα,min

Mfee Upper-bound estimate of pgrid − pref + ∆Pfee

mfee Lower-bound estimate of pgrid − pref + ∆Pfee

Myα
Upper-bound estimate of yα

myα
Lower-bound estimate of yα

N Horizon
Pα,max A generic device’s maximum power when in state α

Pα,min A generic device’s minimum power when in state α

PSTB
e Rated power of the electrolyzer in stand-by

PSTB
f Rated power of the fuel cell in stand-by

Pmax
e Maximum rated power of the electrolyzer in on

Pmin
e Minimum rated power of the electrolyzer in on

Pmax
f Maximum rated power of the fuel cell in on

Pmin
f Minimum rated power of the fuel in on

Ts Sampling time
Wσ Weight related to the cost term cσ (cσ

N)
Wloh Weight related to the cost term cloh (cloh

N )
Wfee Weight related to the cost term cfee (cfee

N )
WOP Weight related to the cost term cOP (cOP

N )
Wpgrid Weight related to the cost term cp (cp

N)

2.4. Description of the Scenario

Figure 2 depicts the scenario addressed, which is similar to that of [8], however with
significant differences about the technological assumptions on the electrolyzer and the fuel
cell, among the others.

Technology Driven Assumptions

1. Stand-by requires very low power, both for the electrolyzer and the fuel cell, that
would otherwise need a very long off-duty period in order to be economically conve-
nient to opt for off operations. Therefore, in our mathematical modeling, we do not
consider a device can be switched off; in turn, this also implies that cold starts are
subsequently not accounted for.

2. The sampling time addressed by the controller (order of tens of minutes) is much
greater than the timescale across which warm starts take place (order of seconds),
which, therefore, are not accounted for.

3. The devices have good time-response performance so that some typical limitations
such as, e.g., ramp limits, are ineffective at the considered sampling times.

These assumptions and corresponding consequences are beneficial because they enable
the formulation of simpler Mixed-Integer Linear (MIL) programs equipped with a reduced
number of constraints to be fulfilled, e.g., with respect to [8].
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2.5.1. MLD Modeling

Equation (3) has to be recast so that it can be easily handled by numerical optimizers.
Indeed, by applying the MLD modeling [26] directly to (3), the achieved inequalities would
force p to take values within not compatible ranges when δα = 0, thus resulting in an
unfeasible inequality set for the optimizer. Instead, a feasible inequality set can be achieved
via the adoption of suitable (auxiliary/slack) logical variables zs that encode only the right-
to-left implication in (3). In addition, for each inequality p− Pα,min ≥ 0, p− Pα,max ≤ 0,
a corresponding set of logical variables has to be used, i.e., ζα≥ and ζα≤, respectively.

Thus,

[ζα≥ = 1]→ [p− Pα,min ≥ 0] ∧ [ζα≥ = 0]→ [p− Pα,min < 0], (4)
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are recast as

−
(

p− Pα,min) ≤ Mα,min (1− ζα≥), (5a)

p− Pα,min ≤ Mα,min ζα≥, (5b)

respectively, and

[ζα≤ = 1]→ [p− Pα,max ≤ 0] ∧ [ζα≤ = 0]→ [p− Pα,max > 0], (6)

are recast as

p− Pα,max ≤ Mα,max (1− ζα≤), (7a)

−
(

p− Pα,max) ≤ Mα,max ζα≤, (7b)

respectively, where Mα,min ≥ max(p− Pα,min) and Mα,max ≥ max(p− Pα,max).
Then, it is necessary to establish a link among δαs and ζα≥s, ζα≤s, such that when

δα = 1, then p ∈ [Pα,min, Pα,max] follows from (5) and (7). To this aim, we identify the
logical statements

[δα = 1]→ [ζα≥ = 1] ∧ [δα = 1]→ [ζα≤ = 1], (8)

which lead to

δα − ζα≥ ≤ 0, (9a)

δα − ζα≤ ≤ 0, (9b)

and
∑
α

δα = 1, (10)

because each automaton can be only in one state at a time. The compound statement (8)
could be “rephrased” differently, i.e., as [δα = 1] → [ζα≥ = 1] ∧ [ζα≤ = 1], leading to a set
of different, yet equivalent, inequalities from (9). However, the set would include a larger
number of inequalities thus requiring a higher computational effort for a solver.

2.5.2. Transitions among the Logic States

The transitions among the logic states must be encoded through inequalities such
that switching costs can be accounted for. To this aim, we consider logic functions σα

βs
of the initial and final states β and α, respectively. They can be defined in terms of the
corresponding logic functions δβ and δα of the involved states. In general,

[(σα
β )+ = 1] ↔ [(δα)+ = 1] ∧ [δβ = 1] (11)

holds, which corresponds to

−(δα)+ + (σα
β )+ ≤ 0, (12a)

−δβ + (σα
β )+ ≤ 0, (12b)

(δα)+ + δβ − (σα
β )+ ≤ 1. (12c)

2.6. Physical Dynamics, Balances and Operating Ranges

In this section, the physical dynamics, balances and operating ranges required for the
achievement of a proper MPC scheme are presented.
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2.6.1. Auxiliary Variables for Mixed Products

Many equations that are needed for the development of the proposed controller
involve the mixed product between continuous variables and logic functions of the states.
These non-linearities can be easily hidden through the introduction of auxiliary variables
and handled via suitable constraints by an optimizer. That is

yα = p δα (13)

are set, and

yα ≤ Myα δα, (14a)

yα ≥ myα δα, (14b)

yα ≤ p−myα (1− δα), (14c)

yα ≥ p−Myα (1− δα), (14d)

are included, where Myα ≥ max yα and myα ≤ min yα.

2.6.2. Hydrogen Level Dynamics

The Level of Hydrogen (LoH) dynamics are affected by both the electrolyzer and the
fuel cell operations, and are modeled by discretization of a continuous-time model with
sampling time Ts, resulting in

(loh)+ = loh + Πe
yON

e
Hmax Ts −

1
Πf

yON
f

Hmax Ts, (15)

where (loh)+ and loh are the LoH at the next and the current time step, respectively, and are
given in terms of fractions of Hmax; Πe ([Πe] = kg/kWh) and Πf ([Πf] = kWh/kg) are
the productivities of the electrolyzer and the fuel cell, respectively, and yON

e , yON
f are two

instances of (13) for the electrolyzer and the fuel cell, respectively (correspondingly, in the
MPC controller two instances of (14), one for the electrolyzer and one for the fuel cell,
will be also included, as well as two instances of all the equations/variables that so far
have been cast/introduced without relating them to a particular device and for which this,
instead, concerns). We remark that yON

e , yON
f can be both positive at the same time, i.e., the

electrolyzer and the fuel cell are not forced to work in mutual exclusivity. This is useful in
order to provide an additional degree of freedom that the controller can leverage in order
to minimize the switching costs.

2.6.3. Power Balance

According to the scenario depicted in Figure 2, the node downstream of the wind farm
forces the power balance constraint

pw − yON
e + yON

f − pgrid = 0, (16)

that will be included in the controller to produce physically meaningful commands, clearly
along with

pgrid ≥ 0, (17)

since in the case under investigation, the power cannot be drawn from the grid.

2.6.4. Operating Ranges

The electrolyzer and the fuel cell power ratings
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PON,min
e = Pmin

e , (18a)

PON,max
e = Pmax

e , (18b)

PSTB,min
e = PSTB,max

e = PSTB
e , (18c)

PON,min
f = Pmin

f , (18d)

PON,max
f = Pmax

f , (18e)

PSTB,min
f = PSTB,max

f = PSTB
f , (18f)

and the tank operating ranges in terms of LoH ratings

LOHmin ≤ loh ≤ LOHmax, (19)

are also included.
Equations (4)–(14) have to be instantiated for each device (i.e., roughly speaking one

copy indexed with e and one copy indexed with f have to be considered) and combined
either with (18a)–(18c) in case of the electrolyzer or with (18d)–(18f) in case of the fuel cell,
such that a corresponding “concrete” model is achieved.

2.7. Scenario Objectives and Requirements

In the addressed scenario, the integrated system is operated in order to inject smooth
power into the grid. Aside from this main purpose, the costs due to the operations should
also be minimized, as well as some profit opportunities should be taken (i.e., maximized).
This determines the number of related terms that are included in the controller’s objective
function and that are developed in what follows. The terms will be also weighted such that
prioritization is enabled.

2.7.1. Smooth Power Injection

In the case under investigation, smooth power injection into the main grid is pursued
via the tracking of a reference profile pref—which is considered smooth by contracts between
the wind farm operator/owner and the electricity market operator—modeled as the relative
quadratic deviation

cpgrid = (pgrid − pref)
2, (20)

and included as a cost in the controller.

2.7.2. Profits/Fees for Contracted Power Delivery

The reference profile pref in (20) can be a contracted power that the wind farm oper-
ator/owner agrees with the TSO the day before the dispatchment day, and may reflect
the trade-off regarding the expected profits generated via selling smooth power and the
likelihood that such amount of electricity can be actually delivered, based on forecasts of
the wind generation. The forecasts are usually provided by third-party companies, that
assume the responsibility of paying the penalty fees in case of mismatches between the
contracted power and that actually delivered, in exchange for a fixed income paid by the
wind farm operator/owner in the percentage of the achieved profits. This mechanism
is accounted for by including an additional logical variable δfee which is activated upon
pgrid − pref being less than the threshold −∆Pfee, where ∆Pfee > 0. Indeed, the critical
condition for the integrated system is that the power scheduled at the next time step is
less than what is required. Especially in combination with too low LoH, this can lead to
unrecoverable conditions where the wind generation and the hydrogen stored in the tank
are not sufficient to fulfill the commitment with the TSO.

If pgrid − pref is less than the threshold −∆Pfee, the profit

(1−Cs) e pgrid Ts, (21)
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which otherwise would be realized, is subsequently deactivated, where Cs is the part of
the earnings achieved by selling the contracted power to the TSO paid by the wind farm
operator/owner to the third party company, and e is a (possibly time-varying) price agreed
upon the day before the dispatchment day by the wind farm operator/owner and the TSO.

In summary, the link between δfee and ∆Pfee is established via

[pgrid − pref + ∆Pfee ≤ 0] ↔ [δfee = 1], (22)

and the resulting constraints

pgrid − pref + ∆Pfee ≤ Mfee(1− δfee), (23a)

pgrid − pref + ∆Pfee ≥ εfee + (mfee − εfee) δfee, (23b)

that have to be included in the controller, where εfee > 0 is a small positive constant required
in order for the equivalence between the left-to-right implication in (22), encoding as (23b),
to hold on the boundary of pgrid − pref + ∆Pfee ≤ 0, Mfee ≥ max(pgrid − pref + ∆Pfee) and
mfee ≤ min(pgrid − pref + ∆Pfee). Then, the cost term

− (1− δfee)(1−Cs) e pgrid Ts (24)

is identified. However, (24) clearly implies the mixed product δfee pgrid, such that also the
mixed variable

yfee = δfee pgrid, (25)

is introduced, and the constraints

yfee ≤ Mfee δfee, (26a)

yfee ≥ mfee δfee, (26b)

yfee ≤ pgrid −mfee (1− δfee), (26c)

yfee ≥ pgrid −Mfee (1− δfee), (26d)

are considered too. Therefore, a cost that the controller will aim at minimizing is

cfee = −(pgrid − yfee)(1−Cs) e Ts. (27)

In (27), the coefficient 1−Cs can be absorbed into the weight associated with cfee when
combined with other cost terms in the optimization set up in Section 2.8.4. However, it will
be explicitly kept in order to highlight the fee awareness.

In conclusion, the controller has the freedom to output a schedule that, in principle,
may not fulfill the commitment with the TSO (for example because the reference profile was
defined upon erroneous wind generation forecasts), however at the price of deactivating
the profits that otherwise would be implied. In case of negative mismatches exceeding
the threshold −∆Pfee, the deriving fee is paid by the third party company. In turn, this
could impact the price of future service renewals, thus resulting in a future cost increase;
however, this is not accounted for by the developed controller, but can be the topic for
future investigations.

2.7.3. Costs During Operations

In general, the costs inherent to the devices’ operations are multiple. In the case under
investigation they are also similarly defined as being related either to the electrolyzer or
the fuel cell. According to the addressed timescales, the relevant costs are those due to the
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electrolyzer and the fuel cell power consumptions during STB and ON operations—and
therefore accounted for via a corresponding instance of

cOP = s (ySTB + yON)Ts, (28)

where s is the energy price in the spot market—and to the switchings between the operating
modes, accounted for via a corresponding instance of

cσ = CON
STB σON

STB + CSTB
ON σSTB

ON , (29)

where CON
STB and CSTB

ON are the switching costs per cycle when a device switches from STB to
ON and vice-versa, respectively.

2.7.4. Costs/Opportunities

In general, hydrogen has a potential value that the wind farm operator/owner wants
to consider even though the integrated system is operated in agreement with the energy-
storage use case. The potential value of the produced hydrogen is the possible profit that
the wind farm operator/owner would realize in case that amount of hydrogen was sold as
fuel instead of being re-electrified. Thus, the controller will also aim at maximizing

cloh = CH loh Hmax, (30)

where CH is the cost of hydrogen per kilogram. However, this should not significantly
conflict with the provision of contracted smooth power injection and, therefore, the cor-
responding weight that will be used when cloh is combined with the other costs has to be
carefully chosen.

2.8. Controller Implementation

MPC controller is implemented at discrete-time k, with sampling time Ts (such that
the continuous time correspondence can be recovered as t = k Ts) and prediction horizon
N. A constrained optimization is carried out at each k till k + N− 1, thus resulting in N
future optimal values for each decision variable against which the optimization is carried
out. However, only the values at k are input while the others are discarded. Then, at k + 1
the relevant state of the plant is measured/computed such that it is used as the initial
condition for the incoming MPC iteration.

In agreement with the notation defined in Section 2.3, the constraints and the costs
previously developed are now rewritten in vector form.

2.8.1. Vectorized Logic and Mixed Variable Constraints

Equations (5), (7), (9) and (10), which encode the links among powers, logic states and
slack variables, are written as

−(p− Pα,min) ≤ Mα,min (1− ζα≥), (31a)

p− Pα,min ≤ Mα,min ζα≥, (31b)

and

p− Pα,max ≤ Mα,max (1− ζα≤), (32a)

−(p− Pα,max) ≤ Mα,max ζα≤, (32b)

and

δα − ζα≥ ≤ 0, (33a)

δα − ζα≤ ≤ 0, (33b)
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and
∑
α

δα = 1, (34)

respectively, where the (in)equalities are meant element-wise.
Similarly, (12) is written as

−(δα)+ + (σα
β)

+ ≤ 0, (35a)

−δβ + (σα
β)

+ ≤ 0, (35b)

(δα)+ + δβ − (σα
β)

+ ≤ 1, (35c)

and (14) as

yα ≤ Myα δα, (36a)

yα ≥ myα δα, (36b)

yα ≤ p 1−myα (1− δα), (36c)

yα ≥ p 1−Myα (1− δα). (36d)

2.8.2. Vectorized Physical Dynamics, Balances and Operating Ranges

Moreover, the involved physical dynamics, balances and operating ranges (15)–(19)
can be easily vectorized, resulting, respectively, in

(loh)+ = loh + Πe
yON

e
Hmax Ts −

1
Πf

yON
f

Hmax Ts, (37)

and

pw − yON
e + yON

f − pgrid = 0, (38a)

pw ≥ 0, (38b)

and

PON,min
e = Pmin

e 1, (39a)

PON,max
e = Pmax

e 1, (39b)

PSTB,min
e = PSTB,max

e = PSTB
e 1, (39c)

PON,min
f = Pmin

f 1, (39d)

PON,max
f = Pmax

f 1, (39e)

PSTB,min
f = PSTB,max

f = PSTB
f 1, (39f)

and
LOHmin1 ≤ loh ≤ LOHmax1. (40)

Similarly to what happens for the scalar versions of the devices’ MLD models, in this
case (39) have to be plugged into (31), (32) such that a “concrete” version is achieved.

2.8.3. Vectorized Objectives and Requirements

The vectorized version of constraints (23) are

pgrid − pref + ∆Pfee 1 ≤ Mfee(1− δfee), (41a)

pgrid − pref + ∆Pfee 1 ≥ εfee 1 + (mfee − εfee) δfee, (41b)
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the vectorized version of constraints (26) are

yfee ≤ Mfee δfee, (42a)

yfee ≥ mfee δfee, (42b)

yfee ≤ pgrid −mfee (1− δfee), (42c)

yfee ≥ pgrid −Mfee (1− δfee), (42d)

and the vectorized versions of costs (20) and (27)–(30) are

c
pgrid
N = (pgrid − pref)

>(pgrid − pref), (43a)

cfee
N = − (pgrid − yfee)>(1−Cs) e Ts, (43b)

cOP
N = s> (ySTB + yON)Ts, (43c)

cσ
N = CON

STB 1>σON
STB + CSTB

ON 1>σSTB
ON , (43d)

cloh
N = CH 1>loh Hmax, (43e)

respectively.

2.8.4. MPC Algorithm

Now, for a generic device, let us define the set of decision variables

DN = {p}
⋃

α

{δα, ζα≥, ζα≤}, (44)

and the costs

cN = Wpgrid c
pgrid
N + Wfeecfee

N −Wlohcloh
N , (45a)

dN = WOPcOP
N + Wσcσ

N, (45b)

where Wpgrid , Wfee, Wloh, WOP and Wσ are suitable weights.
Then, the controller will

minimize
De,N,Df,N

cN + de,N + df,N (46a)

subject to

An instance of (31)–(36)

for the electrolyzer (α = STB, ON), (46b)

An instance of (31)–(36)

for the fuel cell (α = STB, ON), (46c)

Physical dynamics, balances

and operating ranges (37), (38) and (40)–(42), (46d)

Domain constraints for the

logical variables,

where cN is given in (45a) and where De,N, de,N, and Df,N, df,N are instances of the set (44)
of decision variables and of the cost (45b) for the electrolyzer and the fuel cell, respectively.

2.9. Relaxation

In problem (46), the domain constraints for σs can be relaxed from {0, 1} to [0, 1] since
they will be forced to Boolean values by virtue of (35).
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3. Results

The controller algorithm is implemented in Python 3.10 with Pyomo 6.4.0 [28–30] and
FICO XPress [31] optimizer (an industrial-grade numerical solver using Branch-and-Bound
Tree Search) with community license. The wind generation profiles refer to a real wind farm
placed in the center-south of Italy (CSUD market zone), provided by Friendly Power s.r.l.,
San Martino Sannita, Benevento, Italy [32]; due to a change of ownership, only data for the
first ten months of 2017 are available. Market prices are provided by Gestore dei Mercati
Energetici (GME), i.e., the Italian energy market operator [33]. The reference profiles used
by the controller are achieved by smoothing the generation profiles via a Savitzky-Golay
polynomial filter of suitable size and order [34].

The numerical simulations are carried out under different scenarios in order to high-
light the MPC controller performances; the sampling time is set as Ts = 0.167 h (i.e.,
10 min), and the equipment’s parameters are reported in Table 2 for reference, while the
scenarios addressed are summarized in Table 3. Further, the following key assumptions
are understood:

• The wind generation and the energy price forecasts are the same of the actual wind
generation and energy price profiles, respectively, i.e., the simulations are conducted
under the assumption of perfect forecasts;

• There are no model mismatches, which, in combination with the previous bullet,
results in the power injected to the grid and the LoH to be exactly what predicted by
the controller (see (37) and (38));

• The price e agreed upon the day before the dispatchment day by the wind farm
operator/owner and the TSO and the energy prices s in the spot market (forecasts) are
the same, i.e., e = s;

• In all the considered scenarios, the initial conditions of the devices is STB and the
initial LoH is 0.9 with exceptions where otherwise remarked.

The first three scenarios aim at highlighting the impact of each cost component in cN
(see (45a)) under the same operating conditions, i.e., the same generation and reference
profiles, and equipment’s parameters. The fourth scenario includes all the costs combined
via an appropriate choice of the corresponding weights, achieved by carrying out a number
of simulations. The fifth scenario replicates the fourth with the sole difference of the target
period and the sixth scenario replicates the fifth however with the exception of a larger
prediction horizon in order to highlight the impact on the optimal strategy computed by
the MPC algorithm.

Table 2. Equipment’s relevant parameters.

Parameter Description Value

Pmax
e Max. on-power of the electrolyzer 2500 kW

Pmin
e Min. on-power of the electrolyzer 300 kW

PSTB
e Stand-by-power of the electrolyzer 1 kW

(Πe)−1 (Productivity of the electrolyzer)−1 52 kWh/kg

Pmax
f Max. on-power of the fuel cell 2500 kW

Pmin
f Min. on-power of the fuel cell 300 kW

PSTB
f Stand-by-power of the fuel cell 1 kW
Πf Productivity of the fuel cell 17 kWh/kg

Hmax Tank capacity 150 kg
LOHmin Min. LoH in the tank 1
LOHmax Max. LoH in the tank 0
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Table 3. Summary of the addressed scenarios.

Scenario Description Reference Period Parameter Value

1

Isolate and highlight
the impact of c

pgrid

N on
wind-hydrogen

system operations

From 14:40 of 18 February
2017 to 14:40 of 20
February 2017

N 18 samples (i.e., 3 h)
WOP

e , Wσ
e 0

WOP
f , Wσ

f 0
Wfee, Wloh 0

2

Isolate and highlight
the impact of cfee

N on
wind-hydrogen

system operations

N 18 samples (i.e., 3 h)
∆Pfee 2000 kW

“ WOP
e , Wσ

e 0
WOP

f , Wσ
f 0

Wpgrid , Wloh 0

3

Isolate and highlight
the impact of cloh

N on
wind-hydrogen

system operations

N 18 samples (i.e., 3 h)
WOP

e , Wσ
e 0

“ WOP
f , Wσ

f 0
Wfee, Wpgrid 0

4 Full-feature
operations

N 18 samples (i.e., 3 h)
∆Pfee 2000 kW
CH 3e/kg

“ Cs 0.03
WOP

e , Wσ
e 1, 10

WOP
f , Wσ

f 1, 10
Wpgrid , Wloh 0.015× 10−3, 0.07

Wfee 0.2

5 Full-feature
operations

From 09:00 of 27 May
2017 to 09:00 of 29 May
2017

N 18 samples (i.e., 3 h)
∆Pfee 2000 kW
CH 3e/kg
Cs 0.03

WOP
e , Wσ

e 1, 10
WOP

f , Wσ
f 1, 10

Wpgrid , Wloh 0.015× 10−3, 0.03
Wfee 0.2

6 Full-feature
operations

From 09:00 of 29 May
2017 to 09:00 of 31 May
2017

N 60 samples (i.e., 10 h)
∆Pfee 2000 kW
CH 3e/kg
Cs 0.03

WOP
e , Wσ

e 0.9, 8.6
WOP

f , Wσ
f 1, 11

Wpgrid , Wloh 0.015× 10−3, 0.013
Wfee 0.2

3.1. Scenario 1: Impact of Reference-Tracking Cost c
pgrid
N

The impact of c
pgrid
N is highlighted by simulations carried out with conditions as per

Table 3. Figure 4 reports relevant profiles across the first day. The first graph shows the
wind generation profile (blue line) , the power reference that has to be delivered to the grid
(black line) and the actual power delivered (dashed red line), the second graph shows the
electrolyzer and the fuel cell powers, and the fourth graph shows the LoH. The control
objective is to minimize c

pgrid
N . As it is possible to see, the controller tries to track the power

reference pref, however with some mismatches pgrid− pref. For instance, in between 2 h–4 h,
pref ≈ 11,899 kW and pgrid ≈ 10,756 kW resulting in a negative mismatch of approximately
1143 kW. This could imply a fee depending on the agreed ∆Pfee. The mismatch is due to the
combined effect of a drop in the actual wind generation and the LoH in the tank. Moreover,
this is confirmed by the fuel cell power pf which is decreased by the controller after being
operated at maximum power for short time, exactly because the LoH is approaching
zero. Finally, the fuel cell is switched to stand-by. Following, with a small time overlap,
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the electrolyzer is switched on because of a peak in the actual wind generation. However
the peak is not completely smoothed because of the limitations of the electrolyzer which,
in spite being operated at maximum power, does not manage to electrify a sufficient amount
of energy (here, Πe is the penalizing factor). Anyway, the LoH increases as an obvious
consequence. We remark that in this case, the term in the cost function that accounts for the
fees is deactivated. Similar considerations can be performed for the (negative) mismatch in
between 16 h–18 h.Version Thu 21st Jul, 2022 submitted to Energies 15 of 26
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Figure 4. Different profiles related to the reference period from 14:40 of Sat 18th Feb, 2017 to the same
hour of Sun 19th Feb, 2017, for highlighting the impact of cp

N. First graph: power by wind generation
(blue line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: power of the electrolyzer (red line) and power of the fuel cell (blue
line); Third graph: LoH.
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peak is used by the controller to produce some hydrogen since the contracted power to be 342

delivered to the grid is smaller. As for the previous reference period, the peak is not totally 343

smoothed because of the limitations of the electrolyzer. Subsequently, the wind generation 344

and the contracted power are practically the same, with very small and scattered around 345

fluctuations of the former in comparison with the latter, such that the controller has no 346

degree of freedom left in order to boost the LoH. However, what is important to highlight is 347

that the considered peak is barely enough in order to follow the contracted power reference 348

in the immediate following period, even though the negative mismatch between the wind 349

generation and the contracted power therein is small in comparison to the positive similar 350

mismatch in the previous period. This is due to the efficiency of the conversion process 351
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Figure 4. Different profiles related to the reference period from 14:40 of 18 February 2017 to the same
hour of 19 February 2017, for highlighting the impact of c

pgrid

N . First graph: power by wind generation
(blue line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: power of the electrolyzer (red line) and power of the fuel cell (blue
line); Third graph: LoH.

Figure 5 reports graphs similar to those in Figure 4 but related to the subsequent
reference period, i.e., from 14:40 of 19 February 2017 to the same hour of 20 February
2017: the wind generation is very low and this contributes in keeping the LoH low as
well. However, at the beginning of the time window, i.e., in between 24 h–26 h, the local
peak is used by the controller to produce some hydrogen since the contracted power to
be delivered to the grid is smaller. As for the previous reference period, the peak is not
totally smoothed because of the limitations of the electrolyzer. Subsequently, the wind
generation and the contracted power are practically the same, with very small and scattered
around fluctuations of the former in comparison with the latter, such that the controller
has no degrees of freedom left in order to boost the LoH. However, what is important to
highlight is that the considered peak is barely enough in order to follow the contracted
power reference in the immediately following period, even though the negative mismatch
between the wind generation and the contracted power therein is small in comparison
to the positive similar mismatch in the previous period. This is due to the efficiency of
the conversion process determined by the chain electrolyzer-fuel cell, which amounts to
roughly 30%.

Finally, an interesting consideration regarding the devices’ switchings can be per-
formed: just before 38 h both the electrolyzer and the fuel cell are on and operated about at
their minimum power. This may look counterintuitive and counterproductive. However,
as remarked in the theoretical development of the devices’ MLD models, mutually exclu-
sive operations are not forced in order to give the controller an extra degree of freedom for
the minimization of the switching costs. Anyway, in this case there is no switching cost
minimization since the corresponding terms for each device are neglected. Neither this
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could be justified on the contrary because none of the devices are in on before that time
instant. Rather, the mismatch between the wind generation (pw ≈ 11 kW) and the con-
tracted power (pref ≈ 141 kW) cannot be minimized with the sole operations of either the
electrolyzer or the fuel cell (depending on the sign of the mismatch) due to their minimum
on-power being too high with respect to the hydrogen production/electrification capability
required to the purpose. Thus, the controller operates the devices at the same time but
with slightly different on-powers (yON

e ≈ 300 kW and yON
f ≈ 390 kW) so as to achieve a net

effect that would require a device with lower minimum on-power (this outcome can be also
leveraged in order to improve the devices’ sizing). Nevertheless, pgrid ≈ 104 kW < pref
because of the impact of a very low LoH (loh ≈ 0.04).Version Thu 21st Jul, 2022 submitted to Energies 16 of 26

5
10
15
20

[M
W
]

pw
pref

pgrid

0.3

1

2

[M
W
]

pe
pf

24 26 28 30 32 34 36 38 40 42 44 46 48
0

0.5

1

p.
u.

loh

5
10
15
20

[M
W
]

pw
pref

pgrid

0.3

1

2

[M
W
]

pe
pf

24 26 28 30 32 34 36 38 40 42 44 46 48
0

0.5

1

p.
u.

lohFigure 5. Different profiles related to the reference period 14:40 of Sun 19th Feb, 2017 to the same hour
of Mon 20th Feb, 2017, for highlighting the impact of cp

N. First graph: power by wind generation (blue
line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: power of the electrolyzer (red line) and power of the fuel cell (blue
line); Third graph: LoH.
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In the first 24 h the controller operates the electrolyzer and, particularly, the fuel cell 375

such that the negative mismatches between the reference and the power delivered to the 376

grid are within the admissible deviation that does not activate the penalty fees. For instance, 377
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resulting in pgrid ≈ 9934 kW against pref ≈ 11 899 kW, and thus in a negative mismatch of 379
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Figure 5. Different profiles related to the reference period 14:40 of 19 February 2017 to the same hour
of 20 February 2017, for highlighting the impact of c

pgrid

N . First graph: power by wind generation (blue
line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: power of the electrolyzer (red line) and power of the fuel cell (blue
line); Third graph: LoH.

3.2. Scenario 2: Impact of Penalty Fees Cost cfee
N

The impact of cfee
N is highlighted by simulations carried out with data from the same

reference period of Scenario 1 (Section 3.1), such that a comparison is also straightforward.
For the other relevant conditions, as before, we refer to Table 3. Moreover, Figures 6 and 7
report the same quantities, with the only addition of the market price profile as second
graph, since its relevance in cfee

N . In this case, the control objective is to maximize cfee
N .

In the first 24 h the controller operates the electrolyzer and, particularly, the fuel cell
such that the negative mismatches between the reference and the power delivered to the
grid are within the admissible deviation that does not activate the penalty fees. For instance,
in between 2 h and 4 h the fuel cell is operated at about 80% (i.e., approximately 2000 kW),
resulting in pgrid ≈ 9934 kW against pref ≈ 11,899 kW, and thus in a negative mismatch of
approximately 1965 kW. This choice depends on the spot prices that do not promote the
activation of the electrolyzer, and, indeed, the wind generation peak at 4 h is not leveraged
to produce hydrogen by this means. As a result, the LoH drops dramatically. However,
by chance, this has a very negligible impact on the performance of the wind-hydrogen
system since the reference profile is tracked without incurring the fees in the following
hours. In particular, this is also achieved via the activation of the electrolyzer in between
14 h and 16 h which realizes an increase in the LoH such that the subsequent drop in the
wind generation can be mitigated appropriately. Anyway, just a few minutes before 24 h,
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the negative mismatch between the reference profile and the wind generation cannot be
prevented because barely any hydrogen is in the tank.Version Thu 21st Jul, 2022 submitted to Energies 17 of 26
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Figure 6. Different profiles related to the reference period from 14:40 of Sat 18th Feb, 2017 to the
same hour of Sun 19th Feb, 2017, for highlighting the impact of cfee

N . First graph: power by wind
generation (blue line), power reference that has to be delivered to the grid (black line) and actual
power delivered (dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati
Energetici s.p.a. — www.mercatoelettrico.org”); Third graph: power of the electrolyzer (red line) and
power of the fuel cell (blue line); Fourth graph: LoH.
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N vs. optimizing the sole cp

N (see. Figure 6 and 391

Figure 4, respectively). In particular, in Scenario 2 the controller is not committed to track 392

a profile, rather it is in charge of not activating the fees and to optimize the revenues by 393

selling energy to the grid. In compliance with this target, e.g., in between 2 h and 4 h, the 394

controller produces the minimum effort in order not to activate the fees. This strategy does 395

not promote the activation of the electrolyzer, such that, in terms of the resulting LoH in the 396

tank, this is pretty much more likely to be very low or even zero. The differences between 397

Scenario 2 and 1 are even more obvious by comparing the profiles of the subsequent 24 h, 398

i.e., from 14:40 of Sun 19th Feb, 2017 to the same hour of Mon 20th Feb, 2017 (see. Figure 5 399

and 7, respectively). In the case of Scenario 2, i.e., Figure 7, the LoH is zero across all the 400

relevant period, the electrolyzer and the fuel cell are never activated, such that the entire 401

wind generation is delivered to the grid as is, and no penalties are paid as well. While, in 402

Figure 6. Different profiles related to the reference period from 14:40 of 18 February 2017 to the
same hour of 19 February 2017, for highlighting the impact of cfee

N . First graph: power by wind
generation (blue line), power reference that has to be delivered to the grid (black line) and actual
power delivered (dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati
Energetici s.p.a.—www.mercatoelettrico.org (accessed on 1 July 2022)”); Third graph: power of the
electrolyzer (red line) and power of the fuel cell (blue line); Fourth graph: LoH.

Just by comparing the first 24 h of Scenario 2 and Scenario 1, the different implications
of minimizing the sole cfee

N vs. minimizing the sole c
pgrid
N (see Figures 4 and 6, respectively)

are apparent. In particular, in Scenario 2 the controller is not committed to tracking a profile,
rather it is in charge of not activating the fees and optimizing the revenues by selling energy
to the grid. In compliance with this target, e.g., in between 2 h and 4 h, the controller
produces the minimum effort in order not to activate the fees. This strategy does not
promote the activation of the electrolyzer, such that, in terms of the resulting LoH in the
tank, this is pretty much more likely to be very low or even zero. The differences between
Scenario 2 and 1 are even more obvious by comparing the profiles of the subsequent 24 h,
i.e., from 14:40 of 19 February 2017 to the same hour of 20 February 2017 (see Figure 5 and 7,
respectively). In the case of Scenario 2, i.e., Figure 7, the LoH is zero across all the relevant
periods, the electrolyzer and the fuel cell are never activated, such that the entire wind
generation is delivered to the grid as is, and no penalties are paid as well. While, in the case
of Scenario 1, i.e., Figure 5, the reference profile is better tracked, the electrolyzer and the
fuel cell are activated for this purpose and the deriving LoH is less likely to be zero.

www.mercatoelettrico.org
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Figure 7. Different profiles related to the reference period 14:40 of Sun 19th Feb, 2017 to the same hour
of Mon 20th Feb, 2017, for highlighting the impact of cfee

N . First graph: power by wind generation
(blue line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a. —
www.mercatoelettrico.org”); Third graph: power of the electrolyzer (red line) and power of the fuel
cell (blue line); Fourth graph: LoH.

the case of Scenario 1, i.e., Figure 5, the reference profile is better tracked, the electrolyzer 403

and the fuel cell are activated to this purpose and the deriving LoH is less likely to be zero. 404

3.3. Scenario 3: Impact of hydrogen value cost cloh
N 405

In Scenario 3 the impact of the optimization of the sole cloh
N is presented (see Table 2 406

for reference). The chosen relevant period for the numerical simulations is the same of the 407

previous scenarios, but it is reported in only one plot (the reason will appear clear in what 408

follows). Also the relevant quantities are arranged differently, with the reference profile 409

being not shown: the first graph reports the wind generation (blue line) and the power 410

delivered to the grid (dashed red line); the second graph reports the electrolyzer (red line) 411

and the fuel cell (blue line) powers; the third graph reports the LoH. In this case, the control 412

objective is to maximize cloh
N . In this sense, in order to set an adverse initial condition, LoH 413

is set to 0.1, while in the previous scenarios was 0.9. 414

As Figure 8 shows, the controller operates the devices consistently with the objective. 415

The electrolyzer is switched on at maximum power such that the LoH increases till the 416

maximum. Subsequently, the electrolyzer is switched to stand-by, and the power delivered 417

to the grid matches exactly that by wind generation. 418

3.4. Scenario 4: Full-feature Operations with N = 18 419

In this scenario, all the cost terms developed in the article are included in the controller. 420

The cost weights are chosen as reported in Table 2, following a number of simulations in 421

order to find a good balance among all the (conflicting) objectives. 422

Figure 7. Different profiles related to the reference period 14:40 of 19 February 2017 to the same hour
of 20 February 2017, for highlighting the impact of cfee

N . First graph: power by wind generation (blue
line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a.—
www.mercatoelettrico.org (accessed on 1 July 2022)”); Third graph: power of the electrolyzer (red
line) and power of the fuel cell (blue line); Fourth graph: LoH.

3.3. Scenario 3: Impact of Hydrogen Value Cost cloh
N

In Scenario 3 the impact of the optimization of the sole cloh
N is presented (see Table 3

for reference). The chosen relevant period for the numerical simulations is the same as the
previous scenarios. Moreover, the relevant quantities are arranged differently, with the
reference profile being not shown: the first graph reports the wind generation (blue line) and
the power delivered to the grid (dashed red line); the second graph reports the electrolyzer
(red line) and the fuel cell (blue line) powers; the third graph reports the LoH. In this case,
the control objective is to maximize cloh

N . In this sense, in order to set an adverse initial
condition, LoH is set to 0.1, while in the previous scenarios was 0.9.

As Figure 8 shows, the controller operates the devices consistently with the objective.
The electrolyzer is switched on at maximum power such that the LoH increases to the
maximum. Subsequently, the electrolyzer is switched to stand-by, and the power delivered
to the grid matches exactly that of wind generation.

www.mercatoelettrico.org
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Figure 8. Different profiles related to the reference period from 14:40 of Sat 18th Feb, 2017 to the
same hour of Mon 20th Feb, 2017, for highlighting the impact of cloh

N . First graph: power by wind
generation (blue line) and power delivered to the grid (dashed red line); Second graph: power of the
electrolyzer (red line) and power of the fuel cell (blue line); Fourth graph: LoH.
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Figure 9. Different profiles related to the reference period from 14:40 of Sat 18th Feb, 2017 to the same
hour of Sun 19th Feb, 2017, with full-feature operations. First graph: power by wind generation (blue
line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a. —
www.mercatoelettrico.org”); Third graph: power of the electrolyzer (red line) and power of the fuel
cell (blue line); Fourth graph: LoH.

Figure 8. Different profiles related to the reference period from 14:40 of 18 February 2017 to the same
hour of 20 February 2017, for highlighting the impact of cloh

N . First graph: power by wind generation
(blue line) and power delivered to the grid (dashed red line); Second graph: power of the electrolyzer
(red line) and power of the fuel cell (blue line); Fourth graph: Level of Hydrogen (LoH).

3.4. Scenario 4: Full-Feature Operations with N = 18

In this scenario, all the cost terms developed in the article are included in the controller.
The cost weights are chosen as per Table 3, following a number of simulations in order to
find a good balance among all the (conflicting) objectives.

The relevant period for the assessment of the performances is the same as of the
previous scenarios, as Figures 9 and 10 show. Across the whole time interval, fees are
never activated, as the controller manages to mitigate the lack of renewable generation.
For instance, this is highlighted in Figure 9, in between 2 h–4 h: the controller operates the
fuel cell at full power with a subsequent steep drop of the LoH. However, as the renewable
generation increases rapidly till a local peak, the fuel cell is switched to stand-by and the
electrolyzer is operated at full power. In this case, the competing terms in the optimizer
are cfee

N and cloh
N , with a lesser dominance of the former with respect to the latter. Thus,

in spite of increasing spot prices, the positive peak in the generation is mitigated and
used for hydrogen production. This helps the controller to oppose the future drops in the
renewable generation via an appropriate re-electrification of the hydrogen. Anyway, as a
tendency, the LoH is mostly likely to stay below 0.5 (with the initial condition set to 0.9),
which suggests that the priority to the hydrogen production is appropriate (also because
no fees are paid, as already noted) for the first timespan. Instead, in the subsequent 24 h,
as Figure 10 shows, wind variability is minor and LoH increases notwithstanding some
peaks in the spot prices which instead could be leveraged by the controller. However,
selecting different values of the weights would not produce any improvement because the
lesser the tendency to keep the hydrogen stored in the tank the higher the possibility that
the controller uses this “degree of freedom” during the first 24 h, with the implication that
in the second 24 h the LoH would be so low to prevent to re-electrify it anyway. In practice,
setting dynamically the weights could be a possible solution.
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Figure 8. Different profiles related to the reference period from 14:40 of Sat 18th Feb, 2017 to the
same hour of Mon 20th Feb, 2017, for highlighting the impact of cloh

N . First graph: power by wind
generation (blue line) and power delivered to the grid (dashed red line); Second graph: power of the
electrolyzer (red line) and power of the fuel cell (blue line); Fourth graph: LoH.
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Figure 9. Different profiles related to the reference period from 14:40 of Sat 18th Feb, 2017 to the same
hour of Sun 19th Feb, 2017, with full-feature operations. First graph: power by wind generation (blue
line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a. —
www.mercatoelettrico.org”); Third graph: power of the electrolyzer (red line) and power of the fuel
cell (blue line); Fourth graph: LoH.

Figure 9. Different profiles related to the reference period from 14:40 of 18 February 2017 to the same
hour of 19 February 2017, with full-feature operations. First graph: power by wind generation (blue
line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a.—
www.mercatoelettrico.org (accessed on 1 July 2022)”); Third graph: power of the electrolyzer (red
line) and power of the fuel cell (blue line); Fourth graph: LoH.Version Thu 21st Jul, 2022 submitted to Energies 20 of 26
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Figure 10. Different profiles related to the reference period from 14:40 of Sun 19th Feb, 2017 to the
same hour of Mon 20th Feb, 2017, with full-feature operations. First graph: power by wind generation
(blue line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a. —
www.mercatoelettrico.org”); Third graph: power of the electrolyzer (red line) and power of the fuel
cell (blue line); Fourth graph: LoH.
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LoH is mostly likely to stay below 0.5 (with initial condition set to 0.9), which suggests that 434

the priority to the hydrogen production is appropriate (also because no fees are paid, as 435

already noted) for the first time-span. Instead, in the subsequent 24 h, as Figure 10 shows, 436

wind variability is minor and LoH increases notwithstanding some peaks in the spot prices 437

which instead could be leveraged by the controller. However, selecting different values of 438

the weights would not produce any improvement because the lesser is the tendency to keep 439

the hydrogen stored in the tank the higher is the possibility that the controller uses this 440

“degree of freedom” during the first 24 h, with the implication that in the second 24 h the 441

LoH would be so low to prevent to re-electrify it anyway. In practice, setting dynamically 442
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Figure 10. Different profiles related to the reference period from 14:40 of 19 February 2017 to the same
hour of 20 February 2017, with full-feature operations. First graph: power by wind generation (blue
line), power reference that has to be delivered to the grid (black line) and actual power delivered
(dashed red line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a.—
www.mercatoelettrico.org (accessed on 1 July 2022)”); Third graph: power of the electrolyzer (red
line) and power of the fuel cell (blue line); Fourth graph: LoH.
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3.5. Full-Feature Operations in Spring/Summer with N = 18 vs. N = 60

In this section, the effects of different prediction horizons in the same target period,
i.e., Scenario 5 vs. Scenario 6, are highlighted, and the corresponding strategies are com-
pared. In order to mitigate the bias of the single cost terms resulting naturally from the
increase in the prediction horizon, their weights for N = 60 are standardized against the
horizon such that their averages across the whole simulation time amount to the same as
the averages of the terms in case of N = 18.

Figures 11 and 12 show the different strategies provided by the controller within
the first and the second 24 h, respectively, of 29 May 2017, with initial time set to 09:00
and initial condition for LoH set to 0.1. There, similar quantities as those in the previous
discussions are presented, with the difference that dashed lines are used to indicate the
evolutions of relevant quantities when pertaining to the strategy for N = 60.
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Figure 11. Different profiles related to the reference period from 09:00 of Mon 29th May, 2017 to the
same hour of Tue 30th May, 2017, with full-feature operations: N = 18 vs. N = 60. First graph: power
by wind generation (blue solid line), power reference that has to be delivered to the grid (black solid
line), actual power delivered when N = 18 (red solid line) and actual power delivered when N = 60
(green dashed line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a.
— www.mercatoelettrico.org”); Third graph: power of the electrolyzer when N = 18 (red solid line),
power of the fuel cell when N = 18 (blue solid line), power of the electrolyzer when N = 60 (red
dashed line) and power of the fuel cell when N = 60 (blue dashed line); Fourth graph: LoH when
N = 18 (magenta solid line) and LoH when N = 60 (magenta dashed line).
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Figure 11. Different profiles related to the reference period from 09:00 of 29 May 2017 to the same
hour of 30 May 2017, with full-feature operations: N = 18 vs. N = 60. First graph: power by wind
generation (blue solid line), power reference that has to be delivered to the grid (black solid line),
actual power delivered when N = 18 (red solid line) and actual power delivered when N = 60
(green dashed line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici
s.p.a.—www.mercatoelettrico.org (accessed on 1 July 2022)”); Third graph: power of the electrolyzer
when N = 18 (red solid line), power of the fuel cell when N = 18 (blue solid line), power of the
electrolyzer when N = 60 (red dashed line) and power of the fuel cell when N = 60 (blue dashed line);
Fourth graph: LoH when N = 18 (magenta solid line) and LoH when N = 60 (magenta dashed line).
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Figure 12. Different profiles related to the reference period from 09:00 of Mon 29th May, 2017 to the
same hour of Tue 30th May, 2017, with full-feature operations: N = 18 vs. N = 60. First graph: power
by wind generation (blue solid line), power reference that has to be delivered to the grid (black solid
line), actual power delivered when N = 18 (red solid line) and actual power delivered when N = 60
(green dashed line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici s.p.a.
— www.mercatoelettrico.org”); Third graph: power of the electrolyzer when N = 18 (red solid line),
power of the fuel cell when N = 18 (blue solid line), power of the electrolyzer when N = 60 (red
dashed line) and power of the fuel cell when N = 60 (blue dashed line); Fourth graph: LoH when
N = 18 (magenta solid line) and LoH when N = 60 (magenta dashed line).

Figure 12. Different profiles related to the reference period from 09:00 of 30 May 2017 to the same
hour of 31 May 2017, with full-feature operations: N = 18 vs. N = 60. First graph: power by wind
generation (blue solid line), power reference that has to be delivered to the grid (black solid line),
actual power delivered when N = 18 (red solid line) and actual power delivered when N = 60
(green dashed line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici
s.p.a.—www.mercatoelettrico.org (accessed on 1 July 2022)”); Third graph: power of the electrolyzer
when N = 18 (red solid line), power of the fuel cell when N = 18 (blue solid line), power of the
electrolyzer when N = 60 (red dashed line) and power of the fuel cell when N = 60 (blue dashed line);
Fourth graph: LoH when N = 18 (magenta solid line) and LoH when N = 60 (magenta dashed line).

As it is possible to notice, even though at first look the strategies might seem rather
similar, they imply remarkable differences in the time evolution of the LoHs. In case of
N = 18, the achieved LoH keeps generally low across the two days. While, in the case
of N = 60, the controller manages to achieve an increasing evolution till loh = 0.5 at
the end of the second day. The differences in terms of pgrid are subtle, however, they
are remarked by the different activation of the electrolyzer and the fuel cell. In case of
N = 60, the controller tends to produce hydrogen more than in the case of N = 18, which is
highlighted, for instance, by the activation of the electrolyzer about 4 h and in between 8 h
and 10 h, roughly, or by the non activation of the fuel cell just about 16 h and the subsequent
minutes. This more conservative strategy is achieved without incurring any fee, as δfee

keeps null across the entire simulation window (clearly the same happens when N = 18
is considered). The differences in the strategy are highlighted also in the plots related to
the second day, especially looking at those reporting the devices’ powers. In both cases,
however, the peak in the spot prices is not leveraged for minimizing the costs accounted for
by the term cfee

N . Actually, this can be achieved by a different choice of the corresponding
weight, i.e., increasing it such that, e.g., cfee

N becomes higher than c
pgrid
N . However, we

remark that the choice is nontrivial in general, as also highlighted in Figure 13. In this
figure, the strategies for two different choices of cfee

N are reported, where solid lines denote
the strategies achieved when the parameters, in general, and cfee

N in particular, are as per
Table 3, while dashed lines denote the strategies achieved when cfee

N is increased to 3.
Further, the whole two-days relevant period is addressed such that it is easy to check that
fixed weights can be ineffective in some circumstances. The two strategies derive also from
two different choices for the initial conditions of LoH, where, in the case of cfee

N = 0.013
(benchmark), the initial condition is set to 0.1 while, in the case of cfee

N = 3, the initial
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condition is set to 0.9, such that being the second strategy less conservative, this aspect can
be better highlighted. The differences can be noted just within the first 24 h, where, in case
of the benchmark value of cfee

N , the evolution of the LoH is increasing due to the various
activations of the electrolyzer. This results in small yet impactful differences in pgrid that
lead to a general LoH decrease when cfee

N is higher. Clearly, the higher priority given to the
earnings from selling energy to the grid increases the tendency of not keeping too much
hydrogen in the tank and/or not to produce hydrogen in case of (local) renewable peaks.

This tendency is confirmed in the subsequent 24 h, where in case of the increased cfee
N

the LoH is decreasing. In particular, in between 35 h–40 h, even though the LoH is very low,
the controller leverages the local peak in the spot market to inject power into the grid at
current prices, notwithstanding this implies zero LoH in the immediate forthcoming time
period, while this choice is not adopted in the case of the benchmark cfee

N . Possibly, a bigger
tank could mitigate this decrease, in combination, as also pinpointed earlier, with the
adoption of a dynamic weighting, which could also be a possible future research direction.
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Figure 13. Different profiles related to the reference period from 09:00 of Mon 29th May, 2017 to
the same hour of Tue 30th May, 2017, with full-feature operations: cfee

N = 0.2 vs. cfee
N = 3. First

graph: power by wind generation (blue solid line), power reference that has to be delivered to the
grid (black solid line), actual power delivered when cfee

N = 0.2 (red solid line) and actual power
delivered when cfee

N = 3 (green dashed line); Second graph: spot market prices s (source: “Gestore
dei Mercati Energetici s.p.a. — www.mercatoelettrico.org”); Third graph: power of the electrolyzer
when cfee

N = 0.2 (red solid line), power of the fuel cell when cfee
N = 0.2 (blue solid line), power of the

electrolyzer when cfee
N = 3 (red dashed line) and power of the fuel cell when cfee

N = 3 (blue dashed
line); Fourth graph: LoH when cfee

N = 0.2 (magenta solid line) and LoH when cfee
N = 3 (magenta

dashed line).

Figure 13. Different profiles related to the reference period from 09:00 of 29 May 2017 to the same
hour of 30 May 2017, with full-feature operations: cfee

N = 0.2 vs. cfee
N = 3. First graph: power by wind

generation (blue solid line), power reference that has to be delivered to the grid (black solid line),
actual power delivered when cfee

N = 0.2 (red solid line) and actual power delivered when cfee
N = 3

(green dashed line); Second graph: spot market prices s (source: “Gestore dei Mercati Energetici
s.p.a.—www.mercatoelettrico.org (accessed on 1 July 2022)”); Third graph: power of the electrolyzer
when cfee

N = 0.2 (red solid line), power of the fuel cell when cfee
N = 0.2 (blue solid line), power of the

electrolyzer when cfee
N = 3 (red dashed line) and power of the fuel cell when cfee

N = 3 (blue dashed
line); Fourth graph: LoH when cfee

N = 0.2 (magenta solid line) and LoH when cfee
N = 3 (magenta

dashed line).

4. Discussion

This paper targets smooth power injection for wind farms paired to a HESS as estab-
lished by the IEA in the final report of Task 24 operating under the HIA and published in
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2013. This operating mode is considered one among the possible three that can promote the
integration of wind generation into the grid and is not exactly covered by the actual litera-
ture. The paper develops an MPC strategy that relies on MLD modeling for the electrolyzer
and the fuel cell, such that they can be operated by providing suitable logic commands and
a continuous amount of powers they have to convert into hydrogen/re-electrify. The control
strategy is demonstrated considering generation profiles of a real wind farm located in the
center-south of Italy and corresponding real spot market prices. The addressed system and
scenario are similar to those in [8], which shares some of the authors of this paper, however
with a number of different assumptions, closer to a realistic application, that leads to quite
different modeling and results. In addition to power smoothing, the control algorithms also
include additional cost terms in order to account for the inherent value of the produced
hydrogen and in order to account for the fees that the wind farm owner/operator might
incur in case of infringement of the agreement with the TSO on the contracted power to be
delivered to the grid.

The proposed controller shows enough flexibility to balance against different and
competing objectives in real scenarios, providing that an appropriate choice of weights
is adopted. In this regard, the simulations show that a dynamic choice of the weights
corresponding to the costs and revenues that are optimized could be more appropriate
since the controller performances can be strongly affected by the combination of the system
conditions (e.g., the LoH in the tank) with the various exogenous’ (e.g., the renewable
generation and market prices). This, in general, can be a possible investigation research.
Another possible research direction is identified by the use of the developed models and
algorithms in order to carry out a scenario analysis with the aim of achieving different wind-
hydrogen system sizes against multiple renewable generations and spot market profiles.
The outcomes can be fruitfully used for a sizing that also accounts for the minimization of
the devices’ operating costs, among the many.
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